0000000000455259

AUTHOR

Sanjib Kumar Agarwalla

showing 6 related works from this author

Neutrino probes of the nature of light dark matter

2011

Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-\kton{} neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 \kton{} liquid argon detector and a 100 \kton{} magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 5-50 GeV. By suppressing the atmospheric background with angular cuts, these t…

Physics::Instrumentation and DetectorsDark matterFOS: Physical sciences01 natural sciences7. Clean energyStandard ModelNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsLight dark matterParticle Physics - PhenomenologyHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAnnihilationCalorimeter (particle physics)010308 nuclear & particles physicsDetectorFísicaAstronomy and AstrophysicsHigh Energy Physics - PhenomenologyNeutrino detector13. Climate actionHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.

2014

The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…

Physics::Instrumentation and Detectorsfar detectorkaukoputket ja teleskoopit7. Clean energyviolation [CP]CP violation; Neutrino Detectors and Telescopes; Oscillation; Nuclear and High Energy PhysicsHigh Energy Physics - Phenomenology (hep-ph)Observatorymass: hierarchy [neutrino]detector [neutrino]QCPhysicsTime projection chamberLarge Hadron ColliderOscillationmagnetization [iron]oscillation [neutrino]High Energy Physics - PhenomenologyCP violationliquid argon [time projection chamber]CP violationNeutrinoParticle physicsNuclear and High Energy PhysicsCERN Lab530 PhysicseducationFOS: Physical sciencesddc:500.2oscillation [flavor]114 Physical sciencesNuclear physicsphase spacenear detectorstatistical analysisiron [calorimeter]Particle Physics - PhenomenologyAstroparticle physicsNeutrino Detectors and Telescopesta114Físicaflavor [neutrino]CP [phase]CERN SPSMODELproposed [observatory]Oscillation13. Climate actionPhase space[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]gas [argon]beam [neutrino]High Energy Physics::ExperimentMATTERneutrino detectorsCP violation.
researchProduct

Probing the neutrino mass hierarchy with Super-Kamiokande

2012

We show that for recently discovered large values of theta(13), a superbeam with an average neutrino energy of ~ 5 GeV, such as those being proposed at CERN, if pointing to Super-Kamiokande (L = 8770 km), could reveal the neutrino mass hierarchy at 5 sigma in less than two years irrespective of the true hierarchy and CP phase. The measurement relies on the near resonant matter effect in the numu to nue oscillation channel, and can be done counting the total number of appearance events with just a neutrino beam.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderHierarchy (mathematics)010308 nuclear & particles physicsOscillationPhase (waves)FísicaFOS: Physical sciencesSigma01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHigh Energy Physics::ExperimentNeutrino010306 general physicsSuper-KamiokandeMass hierarchyJournal of High Energy Physics
researchProduct

Journal of High Energy Physics

2015

In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the $L/E$ pattern of the oscillation probability. This shift in the depth…

PhysicsNormalization (statistics)Particle physicsNuclear and High Energy PhysicsMuonPhysics - Instrumentation and DetectorsOscillationPhysics beyond the Standard ModelFOS: Physical sciencesFísicaInstrumentation and Detectors (physics.ins-det)High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Beyond Standard ModelNeutrino PhysicsNeutrinoEvent (particle physics)Order of magnitudeCharged currentJournal of High Energy Physics
researchProduct

Working group report: Neutrino physics

2009

This is the report of the neutrino physics working group at WHEPP-X. We summarize the problems selected and discussed at the workshop and the papers which have resulted subsequently.

Physicsline-experiment-simulatorParticle physicsGroup (mathematics)Solar neutrinooscillation experimentsGeneral Physics and AstronomyNeutrino Mass ModelsSolar neutrino problemPhysics and Astronomy(all)Oscillation ExperimentsNeutrino OscillationsNuclear physicsLeptogenesisLine-Experiment-SimulatorLeptogenesisPhysical Sciences and MathematicsMeasurements of neutrino speedNeutrinoLepton Flavour ViolationNeutrino oscillation
researchProduct

Resolving the octant of theta(23) with T2K and NOvA

2013

Preliminary results of MINOS experiment indicate that theta(23) is not maximal. Global fits to world neutrino data suggest two nearly degenerate solutions for theta(23): one in the lower octant (LO: theta(23) 45 degrees). v(mu) -> v(e) oscillations in superbeam experiments are sensitive to the octant and are capable of resolving this degeneracy. We study the prospects of this resolution by the current T2K and upcoming NOvA experiments. Because of the hierarchy-delta(CP) degeneracy and the octant delta(CP) degeneracy, the impact of hierarchy on octant resolution has to be taken into account. As in the case of hierarchy determination, there exist favorable (unfavorable) values of delta(CP) fo…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsFOS: Physical sciencesSilver ChannelOctant (solid geometry)01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)SymmetryHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino Oscillation ExperimentsNeutrino Physics010306 general physicsNeutrino oscillationPhysicsNOνAMixing Matrix010308 nuclear & particles physicsDegenerate energy levelsCp ViolationInstrumentation and Detectors (physics.ins-det)High Energy Physics - PhenomenologyCP violationMINOSBeyond Standard ModelLine-Experiment-SimulatorMass MatrixCP violationNeutrinoIndraStra Global
researchProduct