0000000000455498
AUTHOR
Elvin Isufi
Online Edge Flow Imputation on Networks
Author's accepted manuscript © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. An online algorithm for missing data imputation for networks with signals defined on the edges is presented. Leveraging the prior knowledge intrinsic to real-world networks, we propose a bi-level optimization scheme that exploits the causal dependencies and the flow conservation, respe…
Graph Filtering with Quantization over Random Time-varying Graphs
Distributed graph filters can be implemented over wireless sensor networks by means of cooperation and exchanges among nodes. However, in practice, the performance of such graph filters is deeply affected by the quantization errors that are accumulated when the messages are transmitted. The latter is paramount to overcome the limitations in terms of bandwidth and computation capabilities in sensor nodes. In addition to quantization errors, distributed graph filters are also affected by random packet losses due to interferences and background noise, leading to the degradation of the performance in terms of the filtering accuracy. In this work, we consider the problem of designing graph filte…
Quantization Analysis and Robust Design for Distributed Graph Filters
Distributed graph filters have recently found applications in wireless sensor networks (WSNs) to solve distributed tasks such as reaching consensus, signal denoising, and reconstruction. However, when implemented over WSNs, the graph filters should deal with network limited energy constraints as well as processing and communication capabilities. Quantization plays a fundamental role to improve the latter but its effects on distributed graph filtering are little understood. WSNs are also prone to random link losses due to noise and interference. In this instance, the filter output is affected by both the quantization error and the topological randomness error, which, if it is not properly ac…