0000000000458045
AUTHOR
Aa Dubkov
RELAXATION PHENOMENA IN CLASSICAL AND QUANTUM SYSTEMS
Relaxation phenomena in three different classical and quantum systems are investigated. First, the role of multiplicative and additive noise in a classical metastable system is analyzed. The mean lifetime of the metastable state shows a nonmonotonicbehavior with a maximum as a function of both the additive and multiplicative noise intensities. In the second system, the simultaneous action of thermal and non-Gaussian noise on the dynamics of an overdamped point Josephson junction is studied. The effect of a Lévy noise generated by a Cauchy–Lorentz distribution on the mean lifetime of the superconductive metastable state, in the presence of a periodic driving, is investigated. We find resonan…
Exact Results for Spectra of Overdamped Brownian Motion in Fixed and Randomly Switching Potentials
The exact formulae for spectra of equilibrium diffusion in a fixed bistable piecewise linear potential and in a randomly flipping monostable potential are derived. Our results are valid for arbitrary intensity of driving white Gaussian noise and arbitrary parameters of potential profiles. We find: (i) an exponentially rapid narrowing of the spectrum with increasing height of the potential barrier, for fixed bistable potential; (ii) a nonlinear phenomenon, which manifests in the narrowing of the spectrum with increasing mean rate of flippings, and (iii) a nonmonotonic behaviour of the spectrum at zero frequency, as a function of the mean rate of switchings, for randomly switching potential. …
Critical Phenomena and Diffusion in Complex Systems
Stability under influence of noise with regulated periodicity
A very simple stochastic differential equation with quasi-periodical multiplicative noise is investigated analytically. For fixed noise intensity the system can be stable at high noise periodicity and unstable at low noise periodicity.
Noise enhanced stability in fluctuating metastable states Phys. Rev. E69, 061103 (2004)
We derive general equations for the nonlinear relaxation time of Brownian diffusion in randomly switching potential with a sink. For piece-wise linear dichotomously fluctuating potential with metastable state, we obtain the exact average lifetime as a function of the potential parameters and the noise intensity. Our result is valid for arbitrary white noise intensity and for arbitrary fluctuation rate of the potential. We find noise enhanced stability phenomenon in the system investigated: The average lifetime of the metastable state is greater than the time obtained in the absence of additive white noise.We obtain the parameter region of the fluctuating potential where the effect can be ob…