0000000000458172
AUTHOR
Paola Misso
Algebras with involution with linear codimension growth
AbstractWe study the ∗-varieties of associative algebras with involution over a field of characteristic zero which are generated by a finite-dimensional algebra. In this setting we give a list of algebras classifying all such ∗-varieties whose sequence of ∗-codimensions is linearly bounded. Moreover, we exhibit a finite list of algebras to be excluded from the ∗-varieties with such property. As a consequence, we find all possible linearly bounded ∗-codimension sequences.
Varieties of superalgebras of linear growth
A note on strongly Lie nilpotency
In this note the authors studies strongly Lie nilpotent rings and proves that if a ringR is strongly Lie nilpotent thenR(2), the ideal generated by all commutators, is nilpotent.
Polynomial identities on superalgebras: Classifying linear growth
Abstract We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.
Prime Rings Whose Units Satisfy a Group Identity. II
Abstract Let R be a prime ring and 𝒰(R) its group of units. We prove that if 𝒰(R) satisfies a group identity and 𝒰(R) generates R,then either R is a domain or R is isomorphic to the algebra of n × n matrices over a finite field of order d. Moreover the integers n and d depend only on the group identity satisfed by 𝒰(R). This result has been recently proved by C. H. Liu and T. K. Lee (Liu,C. H.; Lee,T. K. Group identities and prime rings generated by units. Comm. Algebra (to appear)) and here we present a new different proof.
Commutativity conditions on rings
We prove the following result: let R be an arbitrary ring with centre Z such that for every x, y ∈ R, there exists a positive integer n = n(x, y) ≥ 1 such that (xy)n − ynxn ∈ Z and (yx)n − xnyn ∈ Z; then, if R has no non-zero nil ideals, R is commutative. We also prove a result on commutativity of general rings: if R is r!-torsion free and for all x, y ∈ R, [xr, ys] = 0 for fixed integers r ≥ s ≥ 1, then R is commutative. As a corollary we obtain that if R is (n + 1)!-torsion free and there exists a fixed n ≥ 1 such that (xy)n − ynxn = (yx)n − xnyn ∈ Z for all x, y ∈ R, then R is commutative.
Polynomial growth and identities of superalgebras and star-algebras
Abstract We study associative algebras with 1 endowed with an automorphism or antiautomorphism φ of order 2, i.e., superalgebras and algebras with involution. For any fixed k ≥ 1 , we construct associative φ -algebras whose φ -codimension sequence is given asymptotically by a polynomial of degree k whose leading coefficient is the largest or smallest possible.
On algebras and superalgebras with linear codimension growth
We present the classification, up to PI-equivalence, of the algebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. We also describe the generalization of this result in the setting of superalgebras and their graded identities. As a consequence we determine all linear functions describing the ordinary codimensions and the graded codimensions of a given algebra.
Derivations on a Lie Ideal
AbstractIn this paper we prove the following result: let R be a prime ring with no non-zero nil left ideals whose characteristic is different from 2 and let U be a non central Lie ideal of R.If d ≠ 0 is a derivation of R such that d(u) is invertible or nilpotent for all u ∈ U, then either R is a division ring or R is the 2 X 2 matrices over a division ring. Moreover in the last case if the division ring is non commutative, then d is an inner derivation of R.