0000000000458383

AUTHOR

Lamis Al Sheikh

Pseudospectrum and Black Hole Quasinormal Mode Instability

We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)] as an "infrared" effect; (ii) the instability of all overtones under small-scale ("ultraviolet") perturbations of sufficiently high frequency, which migrate towards universal QNM branches along pseudospec…

research product

Scattering resonances and Pseudospectrum : stability and completeness aspects in optical and gravitational systems

The general context of this thesis is an effort to establish a bridge between gravitational andoptical physics, specifically in the context of scattering problems using as a guideline concepts andtools taken from the theory of non-self-adjoint operators. Our focus is on Quasi-Normal Modes(QNMs), namely the natural resonant modes of open leaky structures under linear perturbationssubject to outgoing boundary conditions. They also are referred to as scattering resonances.In the conservative self-adjoint case the spectral theorem guarantees the completeness andspectral stability of the associated normal modes. In this sense, a natural question in the non-self-adjoint setting refers to the char…

research product

A Weyl's law for black holes

We discuss a Weyl's law for the quasi-normal modes of black holes that recovers the structural features of the standard Weyl's law for the eigenvalues of the Laplacian in compact regions. Specifically, the asymptotics of the counting function $N(\omega)$ of quasi-normal modes of $(d+1)$-dimensional black holes follows a power-law $N(\omega)\sim \mathrm{Vol}_d^{\mathrm{eff}}\omega^d$, with $\mathrm{Vol}_d^{\mathrm{eff}}$ an effective volume determined by the light-trapping and decay properties of the black hole geometry. Closed forms are presented for the Schwarzschild black hole and a quasi-normal mode Weyl's law is proposed for generic black holes. As an application, such Weyl's law could …

research product