0000000000459637

AUTHOR

Jacqueline Yaneva

Dynamics of a Spreading Nanodroplet: A Molecular Dynamic Simulation

The spreading of polymer nanodroplets upon a sudden change from partial to complete wetting on an ideally flat and structureless solid substrate has been studied by molecular dynamic simulations using a coarse-grained bead-spring model of flexible macromolecules. Tanner's law for the growth of the lateral droplet radius {R(f) t 0.1 } is found to hold as long as the droplet does not disintegrate into individually moving chains. The data for the contact angle θ following from Tanner's law correspond to a dependence on time {θ(t) t -0.3 }. Our analysis of the mean square displacements of the polymer centers of mass reveals several dynamic regimes during the process of spreading. PACS numbers: …

research product

Polymer droplets on substrates with striped surface domains: molecular dynamics simulations of equilibrium structure and liquid bridge rupture

The structure of a polymer nanodroplet adsorbed on a flat lyophobic substrate chemically decorated with a lyophilic stripe of width 2RD is studied by molecular dynamics simulation of a coarse-grained bead–spring model of short macromolecules (containing N = 20 effective monomers). Varying the stripe width, the strength of the monomer–wall attraction and the temperature, the equilibrium morphology of the resulting droplets is studied and discussed in terms of current phenomenological theories. In the second part, the behaviour of a liquid bridge connecting two such lyophilic stripes a distance L apart is analysed. It is shown that for large enough L such free-standing films are unstable and …

research product