0000000000459715
AUTHOR
Maximilian Lauck
Cobaltocenium substituents as electron acceptors in photosynthetic model dyads
Abstract Cobaltocenium carboxylic acid hexafluorophosphate has been attached to a zinc(II) meso-tetraphenyl porphyrin chromophore via an amide linkage. Optical and electrochemical studies reveal that the metallocene and the porphyrin interact only negligibly in the ground state of the dyad. Photoinduced charge-shift from the zinc porphyrin to the cobaltocenium substituent to give the zinc porphyrin radical cation and the cobaltocene occurs upon exciting the porphyrin with light. Steady state emission, time-resolved fluorescence and transient absorption pump–probe spectroscopy in addition to density functional theory calculations suggest that the charge shift to the cobaltocenium substituent…
N-Cobaltocenium Amide as Reactive Nucleophilic Reagent for Donor–Acceptor Bimetallocenes
Deprotonation of the aminocobaltocenium ion [Cc-NH2]+ ([H-1]+) generates the nucleophilic imine CcNH (1). Reaction of 1 with acid chlorides R–COCl (R = Ph, Fc, and Cc+) yields the reference amide [Ph-CO-NH-Cc]+ (2+) and the amide-linked hetero- and homobimetallocenes [Fc-CO-NH-Cc]+ (3+) and [Cc-CO-NH-Cc]2+ (42+), respectively. Cation–anion interactions of charged amides 2+–42+ in the solid state and in solution are probed by single crystal X-ray diffraction and NMR and IR spectroscopy. Intramolecular metal–metal interactions in donor–acceptor heterobimetallocene 3+ and in mixed-valent homobimetallocene 4+ (prepared electrochemically) are discussed within the Marcus–Hush framework aided by s…
CCDC 1581720: Experimental Crystal Structure Determination
Related Article: Maximilian Lauck, Christoph Förster, Katja Heinze|2017|Organometallics|36|4968|doi:10.1021/acs.organomet.7b00790
CCDC 1581721: Experimental Crystal Structure Determination
Related Article: Maximilian Lauck, Christoph Förster, Katja Heinze|2017|Organometallics|36|4968|doi:10.1021/acs.organomet.7b00790
CCDC 1522073: Experimental Crystal Structure Determination
Related Article: Maximilian Lauck, Christoph Förster, Dominik Gehrig, Katja Heinze|2017|J.Organomet.Chem.|847|33|doi:10.1016/j.jorganchem.2017.02.026