0000000000459727
AUTHOR
C. Kajtoch
Effect of Variable Valence Ion Doping on the Dielectric Properties of BaTiO3–Based Materials
Dielectric properties of BaTiO3, BaTiO3 + 0.1 wt.% Fe2O3 and BaTiO3 + 1 wt.% Fe2O3 ceramics were studied. The dielectric measurements were performed at the temperature ranging from 130 K to 500 K and at the frequency ranging from 0.1 Hz to 10 MHz. Phase transitions were also determined by a thermal analysis in a wide temperature range. Both thermal analysis and electrical characterization techniques show that the temperature of phase transition is shifted towards lower temperatures with increasing Fe2O3 content. The changes and diversity of the observed phase transition temperatures occurred as a consequence of the ion substitution. Such behaviour of the investigated polycrystalline materia…
Influence of cation order on the dielectric properties of (1 – x)Pb(Sc 0:5 Nb 0:5 )O 3 -xPb(Yb 0:5 Nb 0:5 )O 3 ceramics
Ceramic lead niobates and their solid solutions (1 - x)Pb(Sc0:5Nb0:5)O3 - xPb(Yb0:5Nb0:5)O3 were synthesized by solid state reactions from oxides. The structure of investigated samples was characterized by X-ray diffraction (XRD). Dielectric studies of the ceramics were performed by means of broadband dielectric spectroscopy at the temperature ranging from 600 K to 140 K. For all ceramic samples a diffuse phase transition as well as relaxor ferroelectric behavior were observed. © 2020 Barbara Garbarz-Glos et al., published by Sciendo 2020. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Dielectric properties of BaTiO3 based materials with addition of transition metal ions with variable valence
Dielectric properties of BaTiO3(BT), BaTiO3+0.1wt.%MnO2(BTMn) and BaTiO3+0.1 wt.%Fe2O3 (BTFe) solid solution was investigated. The effects of substitution on the microstructure and on the electric properties of BaTiO3 samples were studied by performing X-ray diffraction and electric measurements. X-ray diffraction analysis of the samples shows the formation of single-phase compound with a tetragonal structure at room temperature. SEM microphotographs exhibit the uniform distribution of grains. The electric properties (a real part of electrical permittivity(e') and an imaginary part of electric modulus (M")) were investigated in the temperature range from 150K to 600K and in the frequency ra…
Preparation and Electric Properties of Barium Zirconium Titanate Ceramic
The relaxor behavior of barium zirconium titanate ceramics BaZr0.35Ti0.65O3 prepared by a conventional sintering process was investigated. The synthesized material was determined by an X-ray diffraction and scanning electron microscopy. Based on performed studies, the BaZr0.35Ti0.65O3 ceramic material has been identified as canonical relaxor, related to the Ti-rich polar regions. The freezing temperature Tf and activation energy Ea are calculated from the Vogel-Fulcher relationship.
Dielectric behaviour of BaTi1-xZrxO3ceramics obtained by means of a solid state and mechanochemical synthesis
ABSTRACTIn this study the comparison of dielectric behaviour of BaTi1-xZrxO3 (BTZx) ceramic samples prepared by means of a solid state and mechanochemical synthesis was presented. A single phase of perovskite structure was identified in the samples at room temperature. No significant impurities were detected in an EDS spectrum and the samples had a good stoichiometric ratio. The morphology of the investigated samples was characterized by a scanning electron microscopy (SEM). The investigation of dielectric properties of the BTZx samples within the temperature range from 140 K to 600 K was performed by means of a dielectric spectroscopy method at the frequency ranging from 0.1 Hz to 10 MHz. …