Inverse growth transport in thermal chromia scales on Fe–15Cr steels in oxygen and in water vapour and its effect on scale adhesion
Chromia scales of near equivalent thickness were thermally grown on Fe–15Cr steels in 16O2 followed by 18O2 and in H216O followed by H218O. SIMS oxygen isotope profiles showed that oxidation in oxygen proceeded by outward chromium transport, whereas oxidation in H2O involved inward transport of hydroxide species. Adhesion measurements using room temperature tensile testing could quantify adhesion energy: 20 J m−2 for O2-grown scales and 80 J m−2 for scales formed in H2O, a result of this mass transport inversion.