0000000000459859
AUTHOR
G. V. Karnad
Ferromagnetic layer thickness dependence of the Dzyaloshinskii-Moriya interaction and spin-orbit torques in Pt\Co\AlO x
We report the thickness dependence of the Dzyaloshinskii-Moriya interaction (DMI) and spin-orbit torques (SOTs) in Pt\Co(t)\AlOx, studied by current-induced domain wall (DW) motion and second-harmonic experiments. From the DW motion study, a monotonous decay of the effective DMI strength with increasing Co thickness is observed, in agreement with a DMI originating from the Pt\Co interface. The study of the ferromagnetic layer thickness dependence of spin-orbit torques reveals a more complex behavior. The observed thickness dependence suggests the spin-Hall effect in Pt as the main origin of the SOTs, with the measured SOT-fields amplitudes resulting from the interplay between the varying th…
Role of phonon skew scattering in the spin Hall effect of platinum
We measure and analyze the effective spin Hall angle of platinum in the low residual resistivity regime by second harmonic measurements of the spin-orbit torques for a multilayer of Pt/Co/AlO$_x$. An angular dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly non-monotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperature.
Study of energetics of 360{\deg} domain walls through annihilation
The Dzyaloshinskii-Moriya interaction (DMI) causes domain walls in perpendicular magnetized systems to adopt a homochiral configuration by winding in the same direction for both Up-Down and Down-Up walls. The topology of these domain walls is then distinct from the uniformly magnetized state. When two domain walls approach each other and are in close proximity they form winding pairs, stabilized by a dipolar repulsion. This can result in the formation of 360 {\deg} stable domain walls, whose stability is directly related to the magnitude of the additional dipolar interaction resulting from the spin structure governed by the DMI. Application of an external magnetic field can overcome the dip…