A boundary element model for structural health monitoring using piezoelectric transducers
In this paper, for the first time, the boundary element method (BEM) is used for modelling smart structures instrumented with piezoelectric actuators and sensors. The host structure and its cracks are formulated with the 3D dual boundary element method (DBEM), and the modelling of the piezoelectric transducers implements a 3D semi-analytical finite element approach. The elastodynamic analysis of the structure is performed in the Laplace domain and the time history is obtained by inverse Laplace transform. The sensor signals obtained from BEM simulations show excellent agreement with those from finite element modelling simulations and experiments. This work provides an alternative methodolog…
A Boundary Element Formulation for Modelling Structural Health Monitoring Applications
In this paper, a boundary element formulation for modelling pitch-catch damage detection applications is introduced. The current formulation has been validated by both finite element analyses and physical experiments. Comparing to the widely used finite element method, the current formulation does not only use less computational resources, but also demonstrates higher numerical stability. doi: 10.12783/SHM2015/221
Dual boundary element model of 3D piezoelectric smart structures
In this paper, the application of the dual boundary element method (DBEM) in the field of structural health monitoring (SHM) is explored. The model involves a 3D host structure, which is formulated by the DBEM in the Laplace domain, and 3D piezoelectric transducers, whose finite element model is derived from the electro-mechanical behaviour of piezoelectricity. The piezoelectric transducers and the host structure are coupled together via BEM variables. The practicability of this method in active sensing applications is demonstrated through comparisons with established FEM and parametric studies.