0000000000459990

AUTHOR

Awadhesh Prasad

showing 2 related works from this author

Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system

2015

The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a {hidden attractor} in the case of multistability as well as a classical {self-excited attractor}. The hidden attractor in this system can be localized by analytical-numerical methods based on the {continuation} and {perpetual points}. For numerical study of the attractors' dimension the concept of {finite-time Lyapunov dimension} is developed. A conjecture on the Lyapunov dimension of self-excited attractors and the notion of {exact Lyapunov dimension} are discussed. A comparative survey on the computation of the finite-time Lyapunov expon…

Lyapunov functionMathematics::Dynamical SystemsChaoticAerospace EngineeringFOS: Physical sciencesOcean EngineeringLyapunov exponent01 natural sciences010305 fluids & plasmasadaptive algorithmssymbols.namesakehidden attractorsDimension (vector space)0103 physical sciencesAttractorApplied mathematicsElectrical and Electronic Engineering010301 acousticsMultistabilityMathematicsAdaptive algorithmApplied MathematicsMechanical EngineeringNumerical analysisNonlinear Sciences - Chaotic DynamicsNonlinear Sciences::Chaotic DynamicsControl and Systems EngineeringLyapunov dimensionsymbolsperpetual pointsChaotic Dynamics (nlin.CD)finite-time Lyapunov exponents
researchProduct

Hidden attractors in dynamical systems

2016

Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors whi…

Nonlinear Sciences::Chaotic Dynamicsnonlinear dynamicsmultistabilityattraktoritbasins of attraction
researchProduct