0000000000460220
AUTHOR
Maarten V. De Hoop
Higher-order dynamic ray tracing in ray-centred coordinates
Spherically symmetric terrestrial planets with discontinuities are spectrally rigid
We establish spectral rigidity for spherically symmetric manifolds with boundary and interior interfaces determined by discontinuities in the metric under certain conditions. Rather than a single metric, we allow two distinct metrics in between the interfaces enabling the consideration of two wave types, like P- and S-polarized waves in isotropic elastic solids. Terrestrial planets in our solar system are approximately spherically symmetric and support toroidal and spheroidal modes. Discontinuities typically correspond with phase transitions in their interiors. Our rigidity result applies to such planets as we ensure that our conditions are satisfied in generally accepted models in the pres…
Abel transforms with low regularity with applications to X-ray tomography on spherically symmetric manifolds
We study ray transforms on spherically symmetric manifolds with a piecewise $C^{1,1}$ metric. Assuming the Herglotz condition, the X-ray transform is injective on the space of $L^2$ functions on such manifolds. We also prove injectivity results for broken ray transforms (with and without periodicity) on such manifolds with a $C^{1,1}$ metric. To make these problems tractable in low regularity, we introduce and study a class of generalized Abel transforms and study their properties. This low regularity setting is relevant for geophysical applications.
Higher-order Hamilton–Jacobi perturbation theory for anisotropic heterogeneous media: dynamic ray tracing in Cartesian coordinates
With a Hamilton–Jacobi equation in Cartesian coordinates as a starting point, it is common to use a system of ordinary differential equations describing the continuation of first-order derivatives of phase-space perturbations along a reference ray. Such derivatives can be exploited for calculating geometrical spreading on the reference ray and for establishing a framework for second-order extrapolation of traveltime to points outside the reference ray. The continuation of first-order derivatives of phase-space perturbations has historically been referred to as dynamic ray tracing. The reason for this is its importance in the process of calculating amplitudes along the reference ray. We exte…