0000000000460484

AUTHOR

Roksolana Vasylyshyn

Additional file 2 of Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast

Additional file 2: Table S1. List of primers used in this study.

research product

Anhydrobiosis in yeasts: Glutathione synthesis by yeast Ogataea (Hansenula) polymorpha cells after their dehydration-rehydration.

The possibility of using active dry microbial preparations in biotechnological processes is essential for the development of new modern industrial technologies. In this study, we show the possibility of obtaining such preparations of the genetically engineered yeast strain Ogataea (Hansenula) polymorpha with glutathione overproduction. Special pre-treatment involving the gradual rehydration of dry cells in water vapour led to the restoration/reactivation of almost 100% of dehydrated cells. Furthermore, dry cells do not lose their viability during storage at room temperatures. Application of dry cells as the inoculum provides the same levels of glutathione synthesis as that of a native yeast…

research product

Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast

Abstract Background Xylose transport is one of the bottlenecks in the conversion of lignocellulosic biomass to ethanol. Xylose consumption by the wild-type strains of xylose-utilizing yeasts occurs once glucose is depleted resulting in a long fermentation process and overall slow and incomplete conversion of sugars liberated from lignocellulosic hydrolysates. Therefore, the engineering of endogenous transporters for the facilitation of glucose-xylose co-consumption is an important prerequisite for efficient ethanol production from lignocellulosic hydrolysates. Results In this study, several engineering approaches formerly used for the low-affinity glucose transporters in Saccharomyces cerev…

research product

Additional file 1 of Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast

Additional file 1: Figure S1. Alignment of amino acid sequences of O. polymorpha Hxt1 and S. cerevisiae Hxt1, Hxt3, Hxt6, Hxt7 transporters. Figure S2. Sequence of O. polymorpha Hxt1 transporter. The lysine residues substituted for arginine are shaded grey. The position of the asparagine residue that was mutated to an alanine to obtain Hxt1-N358A mutant is underlined. Figure S3. Linear schemes of plasmids for overexpression of the modified versions of Hxt1, Gal2 and Hxt7 transporters.

research product