0000000000460664

AUTHOR

Mika Valden

0000-0002-9693-9818

Progress in development of a new luminescence setup at the FinEstBeAMS beamline of the MAX IV laboratory

The main funding for the FinEstBeAMS beamline has been obtained from the European Union through the European Regional Development Fund (project “Estonian beamline to MAX-IV synchrotron”, granted to the University of Tartu) and from the Academy of Finland through the Finnish Research Infrastructure funding projects ( FIRI2010 , FIRI2013 , FIRI2014 ). The authors also acknowledge the funding contributions of the University of Oulu , University of Turku , Tampere University of Technology , the Estonian Research Council ( IUT 2-25 , IUT 2-26 , PRG-111 ), as well as the Estonian Centre of Excellence in Research “Advanced materials and high-technology devices for sustainable energetics, sensorics…

research product

Performance and characterization of the FinEstBeAMS beamline at the MAX IV Laboratory

European Regional Development Fund (grant No. TK-141 HiTechDevices 2014-2020.4.01.15-0011 to University of Tartu; grant No. MAX-TEENUS 2014-2020.4.01.20-0278 to University of Tartu; grant No. Eesti Kiirekanal SLOFY11156T/1 to University of Tartu); Estonian Research Council (grant No. PRG-629 to University of Tartu); Jane & Aatos Erkko Foundation (grant No. SOFUS); Business Finland (grant No. 1464/31/2019); Academy of Finland (grant No. 319042; grant No. 326461; grant No. 326406; grant No. 320165); University of Oulu; University of Turku; Tampere University; University of Tartu.

research product

Reversible Photodoping of TiO2 Nanoparticles for Photochromic Applications

Financial support from the Estonian Research Council (IUT2-25, IUT2-26, and PUTJD680) is gratefully acknowledged. This work was supported by the Academy of Finland (decision numbers 141481 and 286713) and by the EU through the European Regional Development Fund (Center of Excellence for Zero Energy and Resource Efficient Smart Buildings and Districts-ZEBE, 2014-2020.4.01.15-0016). Work is supported by the Latvian Academy of Sciences in the framework of FLPP (Plasmonic oxide quantum dots for energy saving smart windows, lzp-2018/1-0187).

research product

Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

AbstractA straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E…

research product