A systematic comparison of jet quenching in different fluid-dynamical models
Comparing four different (ideal and viscous) hydrodynamic models for the evolution of the medium created in 200 AGeV Au-Au collisions, combined with two different models for the path length dependence of parton energy loss, we study the effects of jet quenching on the emission-angle dependence of the nuclear suppression factor R_AA(phi) and the away-side per trigger yield I_AA(phi). Each hydrodynamic model was tuned to provide a reasonable description of the single-particle transverse momentum spectra for all collision centralities, and the energy loss models were adjusted to yield the same pion nuclear suppression factor in central Au-Au collisions. We find that the experimentally measured…
Bayesian inference of the fluctuating proton shape in DIS and hadronic collisions
We determine the likelihood distribution for the model parameters describing the event-by-event fluctuating proton geometry at small $x$ by performing a Bayesian analysis within the Color Glass Condensate framework. The exclusive $\mathrm{J}/\psi$ production data from HERA is found to constrain the model parameters well, and we demonstrate that complementary constraints can be obtained from simulations of Pb+Pb collisions at the LHC.
Multi-scale Imaging of Nuclear Deformation at the Electron Ion Collider
We show within the Color Glass Condensate framework that exclusive vector meson production at high energy is sensitive to the geometric deformation of the target nucleus at multiple length scales. Studying $e+$U collisions and varying the deformation of the uranium target, we demonstrate that larger deformations result in enhanced incoherent vector meson production cross sections. Further, different multipole deformation parameters affect different regions of transverse momentum transfer. Employing JIMWLK evolution to study the Bjorken-$x$ dependence of our results, we find that the ratio of incoherent to coherent cross sections decreases with decreasing $x$, largely independently of the qu…
Bayesian inference of the fluctuating proton shape
Using Bayesian inference, we determine probabilistic constraints on the parameters describing the fluctuating structure of protons at high energy. We employ the color glass condensate framework supplemented with a model for the spatial structure of the proton, along with experimental data from the ZEUS and H1 Collaborations on coherent and incoherent diffractive $\mathrm{J}/\psi$ production in e+p collisions at HERA. This data is found to constrain most model parameters well. This work sets the stage for future global analyses, including experimental data from e+p, p+p, and p+A collisions, to constrain the fluctuating structure of nucleons along with properties of the final state.
Systematics of parton-medium interaction from RHIC to LHC
Despite a wealth of experimental data for high-P_T processes in heavy-ion collisions, discriminating between different models of hard parton-medium interactions has been difficult. A key reason is that the pQCD parton spectrum at RHIC is falling so steeply that distinguishing even a moderate shift in parton energy from complete parton absorption is essentially impossible. In essence, energy loss models are effectively only probed in the vicinity of zero energy loss and, as a result, at RHIC energies only the pathlength dependence of energy loss offers some discriminating power. At LHC however, this is no longer the case: Due to the much flatter shape of the parton p_T spectra originating fr…