0000000000461696

AUTHOR

Dominique Costa

The amorphous silica-liquid water interface studied by ab initio molecular dynamics (AIMD): local organization in global disorder

International audience; The structural organization of water at a model of amorphous silica-liquid water interface is investigated by ab initio molecular dynamics (AIMD) simulations at room temperature. The amorphous surface is constructed with isolated, H-bonded vicinal and geminal silanols. In the absence of water, the silanols have orientations that depend on the local surface topology (i.e. presence of concave and convex zones). However, in the presence of liquid water, only the strong inter-silanol H-bonds are maintained, whereas the weaker ones are replaced by H-bonds formed with interfacial water molecules. All silanols are found to act as H- bond donors to water. The vicinal silanol…

research product

Bimodal Acidity at the Amorphous Silica/Water Interface

International audience; Understanding the microscopic origin of the acid base behavior of mineral surfaces in contact with water is still a challenging task, for both the experimental and the theoretical communities. Even for a relatively simple material, such as silica, the origin of the bimodal acidity behavior is still a debated topic. In this contribution we calculate the acidity of single sites on the humid silica surface represented by a model for the hydroxylated amorphous surface. Using a thermodynamic integration approach based on ab initio molecular dynamics, we identify two different acidity values. In particular, some convex geminals and some type of vicinals are very acidic (pK…

research product