0000000000461862
AUTHOR
E. A. Garcés
The liquid-argon scintillation pulseshape in DEAP-3600
AbstractDEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scin…
The weak mixing angle from low energy neutrino measurements: A global update
Taking into account recent theoretical and experimental inputs on reactor fluxes we reconsider the determination of the weak mixing angle from low energy experiments. We perform a global analysis to all available neutrino-electron scattering data from reactor antineutrino experiments, obtaining sin^2(theta_W) = 0.252 \pm 0.030. We discuss the impact of the new theoretical prediction for the neutrino spectrum, the new measurement of the reactor antineutrino spectrum by the Daya Bay collaboration, as well as the effect of radiative corrections. We also reanalyze the measurements of the nu_e-e cross section at accelerator experiments including radiative corrections. By combining reactor and ac…
Testing the Standard Model and beyond with the LENA proposal
We discuss the possibility of a precision measurement of the electroweak mixing angle and a probe for new physics in the leptonic process of neutrino electron scattering. In the new physics schemes we explore the case of non standard neutrino interactions (NSI). The LENA proposal, currently under discussion, considers a large detector and the use of an articial, 51 Cr, radioactive neutrino source with of 5 MCi intensity. We also discuss the possible use of the solar neutrino
Low-energy neutrino-electron scattering as a Standard Model probe: the potential of LENA as case study
Several proposals for studying neutrinos with large detectors are currently under discussion. We suggest that they could provide a precise measurement of the electroweak mixing angle as well as a probe for new physics, such as non-standard neutrino interactions (NSI), and the electroweak gauge structure. We illustrate this explicitly for the case of the LENA proposal, either with an artificial radioactive source or by using the solar neutrino flux.