0000000000461923

AUTHOR

G. Oliviéro

showing 3 related works from this author

The liquid-argon scintillation pulseshape in DEAP-3600

2020

AbstractDEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scin…

PhotomultiplierPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsDark matterFOS: Physical scienceslcsh:AstrophysicsScintillatorWavelength shifter01 natural sciencesParticle detectorDEAPOptics0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)PhysicsScintillation010308 nuclear & particles physicsbusiness.industryInstrumentation and Detectors (physics.ins-det)Scintillation counterlcsh:QC770-798businessEuropean Physical Journal C: Particles and Fields
researchProduct

Detailed studies of $^{100}$Mo two-neutrino double beta decay in NEMO-3

2019

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $^{100}$Mo to the ground state of $^{100}$Ru, $T_{1/2} = \left[ 6.81 \pm 0.01\,\left(\mbox{stat}\right) ^{+0.38}_{-0.40}\,\left(\mbox{syst}\right) \right] \times10^{18}$ y. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $5\times10^5$ events and a signal-to-background ratio of ~80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limits on Majoron emitting neutrinoless double beta decay modes with spectral indices of …

Particle physicsS029MTPhysics and Astronomy (miscellaneous)FOS: Physical sciencesElementary particle[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exinvariance: Lorentz01 natural sciences7. Clean energyneutrinoless double beta decaydecay modesPhysics Particles & Fieldsdouble-beta decay: (0neutrino)SEARCHDouble beta decay0103 physical sciencesground stateNuclear Experiment (nucl-ex)010306 general physics0206 Quantum PhysicsEngineering (miscellaneous)Nuclear ExperimentMajoronS076H2NPhysicsScience & TechnologyHALF-LIFE010308 nuclear & particles physicsPhysicsMO-100High Energy Physics::PhenomenologyNuclear & Particles PhysicsMajoronviolation: Lorentznucleus: transitionSTATESstatisticsPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma Physicsspectralelectron: energy spectrumHigh Energy Physics::ExperimentNeutrinoGround stateEnergy (signal processing)Radioactive decayLepton
researchProduct

Detailed studies of $$^{100}$$ 100 Mo two-neutrino double beta decay in NEMO-3

2019

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru, $$T_{1/2} = \left[ 6.81 \pm 0.01\,\left( \text{ stat }\right) ^{+0.38}_{-0.40}\,\left( \text{ syst }\right) \right] \times 10^{18}$$ T1/2=6.81±0.01stat-0.40+0.38syst×1018 year. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $$5\times 10^5$$ 5×105 events and a signal-to-background ratio of $$\sim $$ ∼ 80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limit…

European Physical Journal
researchProduct