0000000000461941

AUTHOR

N. Takahashi

Production of zero energy radioactive beams through extraction across superfluid helium surface

A radioactive Ra-223 source was immersed in superfluid helium at 1.2-1.7 K. Electric fields transported recoiled Rn-219 ions in the form of snowballs to the surface and further extracted them across the surface. The ions were focussed onto an aluminium foil and alpha particle spectra were taken with a surface barrier spectrometer. This enabled us to determine the efficiency for each process unambiguously. The pulsed second sound wave proved effective in enhancing the extraction of positive ions from the surface. Thus we offer a novel method for study of impurities in superfluid helium and propose this method for production of zero energy nuclear beams for use at radioactive ion beam facilit…

research product

Anomalous solvent extraction behavior of astatine

We studied the solvent extraction behavior of astatine and found the anomalous behavior of this element similar to radioiodine. Astatine was extracted into CS2 from acidic solution over a wide range of carrier iodine concentration. The distribution ratios of astatine were determined by measuring the γ-ray from 210 At with a Nal(TI) detector. A drastic change was observed around at 10−4 mol/l as in the case of 131 I. This tendency is well explained by the kinematics of the chemical reactions concemed.

research product

Cryogenic helium as stopping medium for high-energy ions

We have investigated the survival and transport efficiency of Ra-219 ions emitted by a Ra-223 source in high-density cryogenic helium gas, with ionisation of the gas induced by a proton beam. The combined efficiency of ion survival and transport by an applied electric field was measured as a function of ionisation rate density for electric fields up to 160 V/cm and for three temperature and density combinations: 77 K, 0.18 mg/cm(3), 10 K, 0.18 mg/cm(3) and 10 K, 0.54 mg/cm(3). At low beam intensity or high electric field, an efficiency of 30%, is obtained, confirming earlier results. A sharp drop in efficiency is observed at a "threshold" ionisation rate density which increases with the squ…

research product

Positive ion extraction across the superfluid-vapor helium interface

The extraction efficiency of positive (219)Rn ions across the superfluid-vapor helium interface above similar to 1.3 K indicates that extraction results from thermal activation across a barrier of about 20 K. Below similar to 1.3 K, the extraction efficiency is constant at about 0.7%. The evaporation of the superfluid surface by second sound pulses has a negative impact on the ion extraction, but not on the ions themselves. It takes 3.2( 6) s at 1.60 K and 15( 6) s at 1.15 K for the extraction process to recover from a disturbed state of yet unknown nature.

research product

Transport and extraction of radioactive ions stopped in superfluid helium

A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling Rn-219 ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface was possible thanks to the high sensitivity of radioactivity detection. An efficiency of 36% was obtained for the ion extraction out of liquid helium. (C) 2003 Elsevier Science B.V. All rights res…

research product

Extraction of radioactive positive ions across the surface of superfluid helium: A new method to produce cold radioactive nuclear beams

Alpha-decay recoils 219Rn were stopped in superfluid helium and positive ions were extracted by electric field into the vapour phase. This first quantitative observation of extraction was successfully conducted using highly sensitive radioactivity detection. The efficiency for extraction across the liquid surface was 23 ± 4% at 1.60 K, the release time was 90 ± 10 ms at 1.50 K and the barrier for positive ions through a free superfluid-helium surface was 19.4 ± 4.5 K. The pulsed second sound proved to be effective in enhancing the extraction.

research product