0000000000461990

AUTHOR

Rémi Vernay

showing 2 related works from this author

Whole mirror duplication-random loss model and pattern avoiding permutations

2010

International audience; In this paper we study the problem of the whole mirror duplication-random loss model in terms of pattern avoiding permutations. We prove that the class of permutations obtained with this model after a given number p of duplications of the identity is the class of permutations avoiding the alternating permutations of length p2+1. We also compute the number of duplications necessary and sufficient to obtain any permutation of length n. We provide two efficient algorithms to reconstitute a possible scenario of whole mirror duplications from identity to any permutation of length n. One of them uses the well-known binary reflected Gray code (Gray, 1953). Other relative mo…

[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]Class (set theory)0206 medical engineeringBinary number0102 computer and information sciences02 engineering and technology[ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]01 natural sciencesIdentity (music)Combinatorial problemsTheoretical Computer ScienceGray codeCombinatoricsPermutation[ INFO.INFO-BI ] Computer Science [cs]/Bioinformatics [q-bio.QM]Gene duplicationRandom loss[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Pattern avoiding permutationGenerating algorithmComputingMilieux_MISCELLANEOUSMathematicsDiscrete mathematicsWhole duplication-random loss modelMathematics::CombinatoricsGenomeParity of a permutationComputer Science Applications[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO][ INFO.INFO-CC ] Computer Science [cs]/Computational Complexity [cs.CC]Binary reflected Gray code010201 computation theory & mathematicsSignal Processing[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]020602 bioinformaticsAlgorithmsInformation Systems
researchProduct

Restricted compositions and permutations: from old to new Gray codes

2011

Any Gray code for a set of combinatorial objects defines a total order relation on this set: x is less than y if and only if y occurs after x in the Gray code list. Let @? denote the order relation induced by the classical Gray code for the product set (the natural extension of the Binary Reflected Gray Code to k-ary tuples). The restriction of @? to the set of compositions and bounded compositions gives known Gray codes for those sets. Here we show that @? restricted to the set of bounded compositions of an interval yields still a Gray code. An n-composition of an interval is an n-tuple of integers whose sum lies between two integers; and the set of bounded n-compositions of an interval si…

0102 computer and information sciences02 engineering and technologyInterval (mathematics)[ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]01 natural sciencesTheoretical Computer ScienceCombinatoricsGray codePermutationsymbols.namesakeInteger020204 information systems[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]0202 electrical engineering electronic engineering information engineeringComputingMilieux_MISCELLANEOUSMathematicsDiscrete mathematicsExtension (predicate logic)Composition (combinatorics)Cartesian productComputer Science Applications010201 computation theory & mathematicsComputer Science::Computer Vision and Pattern RecognitionBounded functionSignal ProcessingsymbolsInformation Systems
researchProduct