0000000000462493

AUTHOR

Sébastien Légaré

Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID‐19?

research product

Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders?

Many individuals who have severe forms of COVID-19 experience a suite of neurovegetative signs and symptoms (eg, tachycardia) after their recovery, suggesting that the imbalance of the sympathetic-parasympathetic activity of the autonomic nervous system1 could continue for many weeks or months after respiratory symptoms stop. Moreover, a reduction of the parasympathetic tone could have a role in restricting the cholinergic anti-inflammatory pathway, thus favouring hyperinflammation and cytokine storm in the most severe phases of the disease. As reported by Guglielmo Lucchese in The Lancet Microbe,2 SARS-CoV-2 can damage the nervous system via an indirect mechanism, resulting in a high preva…

research product

Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the cause of COVID-19 disease, has the potential to elicit autoimmunity because mimicry of human molecular chaperones by viral proteins. We compared viral proteins with human molecular chaperones, many of which are heat shock proteins, to determine if they share amino acid-sequence segments with immunogenic-antigenic potential, which can elicit cross-reactive antibodies and effector immune cells with the capacity to damage-destroy human cells by a mechanism of autoimmunity. We identified the chaperones that can putatively participate in molecular mimicry phenomena after SARS-CoV-2 infection, focusing on those for which endotheli…

research product

Molecular mimicry may explain multi-organ damage in COVID-19

International audience

research product