0000000000462714
AUTHOR
ÁNgeles Pitarch
Impedance of space-charge-limited currents in organic light-emitting diodes with double injection and strong recombination
The impedance model for a one-carrier space-charge-limited (SCL) current has been applied to explain some experimental features of double carrier organic light-emitting diodes. We report the analytical model of impedance of bipolar drift transport in SCL regime in the limit of infinite recombination. In this limit the ac impedance function is identical to that of a single carrier device, with a transit time modified by the sum of mobilities for electrons and holes, μn+μp. The static capacitance C(ω→0) is a factor of ¾ lower than the geometric capacitance, as observed for single carrier devices, but it is shifted to higher frequencies. It follows that impedance measurements in the dual-carri…
Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes
The negative capacitance frequently observed at low frequencies in organic light-emitting diodes (LEDs) is explained as a signature of sequential electron injection at the organic/metal interface first to states in the bandgap in the dipole layer and then to bulk states. The negative capacitance occurs when the interfacial states depart from equilibrium with the metal Fermi level due to an increasing rate of hopping to the bulk states. A simple kinetic model compares well with the experimental results and provides a new tool to investigate interfacial properties for improving the performance of organic LEDs.