0000000000464834

AUTHOR

Tomi Nieminen

showing 3 related works from this author

Uniform continuity of quasiconformal mappings and conformal deformations

2008

We prove that quasiconformal maps onto domains satisfying a suitable growth condition on the quasihyperbolic metric are uniformly continuous even when both domains are equipped with internal metric. The improvement over previous results is that the internal metric can be used also in the image domain. We also extend this result for conformal deformations of the euclidean metric on the unit ball of R n \mathbb {R}^n .

Image domainUnit sphereEuclidean distanceQuasiconformal mappingUniform continuityExtremal lengthMetric (mathematics)Mathematical analysisConformal mapGeometry and TopologyMathematicsConformal Geometry and Dynamics of the American Mathematical Society
researchProduct

Dimension gap under conformal mappings

2012

Abstract We give an estimate for the Hausdorff gauge dimension of the boundary of a simply connected planar domain under p -integrability of the hyperbolic metric, p > 1 . This estimate does not degenerate when p tends to one; for p = 1 the boundary can even have positive area. The same phenomenon is extended to general planar domains in terms of the quasihyperbolic metric. We also give an example which shows that our estimates are essentially sharp.

Mathematics(all)General Mathematics010102 general mathematicsMathematical analysista111Hausdorff spaceMinkowski–Bouligand dimensionBoundary (topology)Dimension functionHausdorff dimensionEffective dimension01 natural sciencesConformal mapping010101 applied mathematicsBoundary behaviourPacking dimensionHausdorff dimensionMetric (mathematics)0101 mathematicsMathematicsAdvances in Mathematics
researchProduct

Homeomorphisms of finite distortion: discrete length of radial images

2008

AbstractWe study homeomorphisms of finite exponentially integrable distortion of the unit ball Bn onto a domain Ω of finite volume. We show that under such a mapping the images of almost all radii (in terms of a gauge dimension) have finite discrete length. We also show that our dimension estimate is essentially sharp.

Unit sphereDistortion (mathematics)Finite volume methodIntegrable systemDimension (vector space)General MathematicsMathematical analysisA domainGeometryGauge (firearms)MathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct