0000000000465016
AUTHOR
Ari T. Friberg
‘Nonlocal’ dispersion cancelation with classical light
We show a classical analog of the original nonlocal dispersion cancelation effect in intensity interferometry with stationary light obeying Gaussian statistics. The dispersion compensation is due to the uncorrelation of the spectral components of the radiation. Although this classical counterpart phenomenon is not nonlocal in a strict quantum mechanical sense, it suggests that some second-order interference devices relying on temporal entanglement do not require a quantum light source.
“Nonlocal” dispersion cancellation with classical light
Nonlocal dispersion cancellation [1] is a quantum phenomenon that relies on the use of a quantum light source, e.g., spontaneous parametric down-conversion (SPDC), providing temporally entangled photon pairs. Each photon in the pair propagates through a dispersive medium [see Fig. 1 (a)]. Under suitable conditions the dispersion of one photon cancels out the dispersion of the other photon, so that their intensity coincidence probability remains unchanged. Nonlocal dispersion cancellation has been experimentally demonstrated [2] and this phenomenon has subsequently triggered important applications in quantum information science, such as quantum-optical coherence tomography, distant clock syn…
Communication modes in vector diffraction
The communication modes, which mathematically correspond to singular value decomposition, have proven a useful concept in optical scalar-field diffraction, with applications in resolution studies, image synthesis, and wave propagation. For optical near-field geometries the communication modes have to be extended to electromagnetic field accounting for the polarization properties. In this paper we present the vector-valued communication modes method based on the rigorous electric-field diffraction integral. As a special case the transverse-electric scalar field modes are obtained. The intensity and polarization properties of the leading electromagnetic communication modes in near-field arran…
Resolution-enhanced optical coherence tomography based on classical intensity interferometry.
We propose a fourth-order interference scheme for optical coherence tomography operating with broadband incoherent (or quasi-incoherent) light. It is shown that using this proposal, an axial resolution improvement by a factor of 2 and a better sensitivity for weakly reflecting samples are obtained than with the standard second-order correlation scheme. From a practical perspective, we suggest the use of broadband Q-switched pulses and performing ultrafast intensity correlation with a nonlinear crystal. The global performance of our proposal is illustrated by means of numerical simulations
Wavelength-multiplexed computational temporal ghost imaging
Ghost imaging is a novel imaging technique based on correlation measurements between a structured illumination pattern (the reference) and the total intensity transmitted or reflected by an object [1]. The reference illumination patterns may be either randomly generated by a spatially incoherent light source, or pre-programmed e.g. with a spatial light modulator. Light transmitted (or reflected) by the object is measured by a single-pixel “bucket” detector with null spatial resolution. A unique feature associated with ghost imaging is that (i) neither the bucket detector nor the reference measurement caries enough information to retrieve the object shape and (ii) it is insensitive to distor…
Supercontinuum spectral-domain ghost imaging
International audience; Ghost imaging is a technique that generates high-resolution images by correlating the intensity of two light beams, neither of which independently contains useful information about the shape of the object. Ghost imaging has been demonstrated in both the spatial and temporal domains, using incoherent classical light sources or entangled photon pairs. Here we exploit the recent progress in ultrafast real-time measurement techniques to demonstrate ultrafast, scan-free, ghost imaging in the frequency domain using a continuous spectrum from an incoherent supercontinuum light source with random spectral fluctuations. We demonstrate the application of this technique to broa…