0000000000465044
AUTHOR
Alberto Morgante
Defect States at theTiO2(110)Surface Probed by Resonant Photoelectron Diffraction
The charge distribution of the defect states at the reduced ${\mathrm{TiO}}_{2}(110)$ surface is studied via a new method, the resonant photoelectron diffraction. The diffraction pattern from the defect state, excited at the $\mathrm{Ti}\mathrm{\text{\ensuremath{-}}}2p\mathrm{\text{\ensuremath{-}}}3d$ resonance, is analyzed in the forward scattering approach and on the basis of multiple scattering calculations. The defect charge is found to be shared by several surface and subsurface Ti sites with the dominant contribution on a specific subsurface site in agreement with density functional theory calculations.
Intrinsic Nature of the Excess Electron Distribution at theTiO2(110)Surface
The gap state that appears upon reduction of TiO2 plays a key role in many of titania's interesting properties but its origin and spatial localization have remained unclear. In the present work, the TiO2(110) surface is reduced in a chemically controlled way by sodium adsorption. By means of resonant photoelectron diffraction, excess electrons are shown to be distributed mainly on subsurface Ti sites strikingly similar to the defective TiO2(110) surface, while any significant contribution from interstitial Ti ions is discarded. In agreement with first principles calculations, these findings demonstrate that the distribution of the band gap charge is an intrinsic property of TiO2(110), indep…
Intra-atomic versus interatomic process in resonant Auger spectra at the TiL23edges in rutile
The two components of the Ti ${L}_{23}{M}_{23}V$ Auger transition recorded on a stoichiometric rutile crystal are identified as ${L}_{2}{M}_{23}V$ and ${L}_{3}{M}_{23}V$ contributions. This assignment is evidenced by concordant data relative to resonances of the LMV decay at the Ti ${L}_{23}$ thresholds and to Auger emission recorded in coincidence with the ${2}_{1/2}$ and ${2}_{3/2}$ photoemission at a photon energy far above the Ti ${L}_{23}$ edges. The ${L}_{3}{M}_{23}V$ transition is shown to follow either the direct photoexcitation of a ${2}_{3/2}$ electron or the fast Coster-Kronig decay of a ${2}_{1/2}$ photohole. Although specific LMV contributions related to valence orbitals are id…
Altered expression of inflammation-related genes in human carotid atherosclerotic plaques.
Abstract Objective Inflammation is a pivotal process in atherosclerosis development and progression, but the underlying molecular mechanisms remain largely obscure. We have conducted an extensive expression study of atherosclerotic plaques to identify the inflammatory pathways involved in atherosclerosis. Methods We studied 11 human carotid plaques, their respective adjacent regions and 7 control arteries from different subjects. Expression of 92 genes was studied by TaqMan low-density array human inflammation panel. Human aortic endothelial and smooth muscle cells were used for in vitro experiments. Results The mRNA levels of 44/92 genes (48%) differed significantly between the tissues exa…
Decreased Paraoxonase-2 Expression in Human Carotids During the Progression of Atherosclerosis
Objective— Many gene products involved in oxidation and inflammation are implicated in the pathogenesis of atherosclerosis. We investigated paraoxonase 2 (PON2), 5-lipoxygenase (5-LO), and 5-LO activating protein (FLAP) expression and malondialdehyde (MDA) levels in carotid lesions to assess their involvement in plaque formation. Methods and Results— We measured gene expression and MDA levels in atherosclerotic plaques from 59 patients undergoing carotid endarterectomy, and in plaque-adjacent tissue from 41/59 patients. Twenty-three fetal carotids and 6 mammary arteries were also investigated. Real-time polymerase chain reaction and immunohistochemistry revealed decreased PON2 expression i…