0000000000465104
AUTHOR
Roberto Fiorelli
Enhanced tissue penetration of antibodies through pressurized immunohistochemistry
ABSTRACTTo address the inefficiency of passive diffusion for antibody penetration in thick tissue samples, which limits clearing-technique applications, we developed a versatile and simple device to perform antibody incubation under increased barometric pressure. Pressurized immunohistochemistry greatly improves the uniformity, intensity, and depth of fluorescent immunostaining in thick human and mouse brain samples. Furthermore, pressurized immunohistochemistry substantially decreases the time required for classic staining of thin sections.SUBMISSION CATEGORYNew Results
The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential
Adult neural stem cells (aNSCs) of the forebrain are GFAP-expressing cells that are intercalated within ependymal cells of the subventricular zone (SVZ). Cells showing NSCs characteristics in vitro can also be isolated from the periaqueductal region in the adult spinal cord (SC), but contradicting results exist concerning their glial versus ependymal identity. We used an inducible transgenic mouse line (hGFAP-CreERT2) to conditionally label GFAP-expressing cells in the adult SVZ and SC periaqueduct, and directly and systematically compared their self-renewal and multipotential properties in vitro. We demonstrate that a population of GFAP+ cells that share the morphology and the antigenic pr…