The Use of Artificial Intelligence (AI) in the Radiology Field: What Is the State of Doctor–Patient Communication in Cancer Diagnosis?
Simple Summary Artificial Intelligence (AI) has been increasingly used in radiology to improve diagnostic procedures over the past decades. The application of AI at the time of cancer diagnosis also creates challenges in the way doctors should communicate the use of AI to patients. The present systematic review deals with the patient's psycho-cognitive perspective on AI and the interpersonal skills between patients and physicians when AI is implemented in cancer diagnosis communication. Evidence from the retrieved studies pointed out that the use of AI in radiology is negatively associated with patient trust in AI and patient-centered communication in cancer disease. Background: In the past…
Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features
Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann–Whitney U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons (MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed on emergency department admission were included after retrieving their outcome (discharge or death), with an 85/15% training/test dataset spli…