0000000000466060

AUTHOR

Eija Pirinen

Mitochondrial bioenergetic pathways in blood leukocyte transcriptome decrease after intensive weight loss but are rescued following weight regain in female physique athletes

Prolonged periods of energy deficit leading to weight loss induce metabolic adaptations resulting in reduced energy expenditure, but the mechanisms for energy conservation are incompletely understood. We examined 42 healthy athletic females (age 27.5 +/- 4.0 years, body mass index 23.4 +/- 1.7 kg/m(2)) who volunteered into either a group dieting for physique competition (n = 25) or a control group (n = 17). The diet group substantially reduced their energy intake and moderately increased exercise levels to induce loss of fat mass that was regained during a voluntary weight regain period. The control group maintained their typical lifestyle habits and body mass as instructed. From the diet g…

research product

Nicotinamide riboside improves muscle mitochondrial biogenesis, satellite cell differentiation, and gut microbiota in a twin study

Nicotinamide adenine dinucleotide (NAD + ) precursor nicotinamide riboside (NR) has emerged as a promising compound to improve obesity-associated mitochondrial dysfunction and metabolic syndrome in mice. However, most short-term clinical trials conducted so far have not reported positive outcomes. Therefore, we aimed to determine whether long-term NR supplementation boosts mitochondrial biogenesis and metabolic health in humans. Twenty body mass index (BMI)–discordant monozygotic twin pairs were supplemented with an escalating dose of NR (250 to 1000 mg/day) for 5 months. NR improved systemic NAD + metabolism, muscle mitochondrial number, myoblast differentiation, and gut microbiota compos…

research product

NAD+ repletion with niacin counteracts cancer cachexia

AbstractCachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NAD+) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NAD+ and downregulation of Nrk2, an NAD+ biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NAD+ repletion therapy in cachectic mice reveals that NAD+ precursor, vitamin B3 niacin, efficiently corrects tissue NAD+ levels, improves mitochondrial metabolism and amel…

research product