0000000000466308

AUTHOR

Lorenzo Giacomelli

showing 7 related works from this author

Nonlinear Diffusion in Transparent Media

2021

Abstract We consider a prototypical nonlinear parabolic equation whose flux has three distinguished features: it is nonlinear with respect to both the unknown and its gradient, it is homogeneous, and it depends only on the direction of the gradient. For such equation, we obtain existence and uniqueness of entropy solutions to the Dirichlet problem, the homogeneous Neumann problem, and the Cauchy problem. Qualitative properties of solutions, such as finite speed of propagation and the occurrence of waiting-time phenomena, with sharp bounds, are shown. We also discuss the formation of jump discontinuities both at the boundary of the solutions’ support and in the bulk.

Dirichlet problemflux-saturated diffusion equationsGeneral Mathematicsneumann problemMathematical analysisparabolic equationsBoundary (topology)waiting time phenomenaClassification of discontinuitiesparabolic equations; dirichlet problem; cauchy problem; neumann problem; entropy solutions; flux-saturated diffusion equations; waiting time phenomena; conservation lawsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsNeumann boundary conditionInitial value problemcauchy problemUniquenessdirichlet problemconservation lawsEntropy (arrow of time)entropy solutionsAnalysis of PDEs (math.AP)MathematicsInternational Mathematics Research Notices
researchProduct

Regular 1-harmonic flow

2017

We consider the 1-harmonic flow of maps from a bounded domain into a submanifold of a Euclidean space, i.e. the gradient flow of the total variation functional restricted to maps taking values in the manifold. We restrict ourselves to Lipschitz initial data. We prove uniqueness and, in the case of a convex domain, local existence of solutions to the flow equations. If the target manifold has non-positive sectional curvature or in the case that the datum is small, solutions are shown to exist globally and to become constant in finite time. We also consider the case where the domain is a compact Riemannian manifold without boundary, solving the homotopy problem for 1-harmonic maps under some …

Applied Mathematics010102 general mathematicsMathematical analysisBoundary (topology)Total variation flow; harmonic flow; well-posednessRiemannian manifoldLipschitz continuitySubmanifold01 natural sciencesManifoldDomain (mathematical analysis)35K51 35A01 35A02 35B40 35D35 35K92 35R01 53C21 68U10010101 applied mathematicsMathematics - Analysis of PDEsFlow (mathematics)FOS: MathematicsMathematics::Differential GeometrySectional curvature0101 mathematicsAnalysisAnalysis of PDEs (math.AP)MathematicsCalculus of Variations and Partial Differential Equations
researchProduct

Solutions to the 1-harmonic flow with values into a hyper-octant of the N-sphere

2013

Abstract We announce existence results for the 1-harmonic flow from a domain of R m into the first hyper-octant of the N -dimensional unit sphere, under homogeneous Neumann boundary conditions. The arguments rely on a notion of “geodesic representative” of a BV-vector field on its jump set.

Unit spheren-sphereGeodesicApplied MathematicsMathematical analysisA domainharmonic flowsOctant (solid geometry)non-convex variational problems1-harmonic flowlower semi-continuity and relaxation; total variation flow; 1-harmonic flow; non-convex variational problems; image processing; geodesic; partial differential equations; harmonic flowsimage processingHomogeneoustotal variation flowNeumann boundary conditionJumppartial differential equationslower semi-continuity and relaxationgeodesicMathematics
researchProduct

THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE

2014

We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total variation of a vector field with respect to the [math] -distance — from a domain of [math] into a hyperoctant of the [math] -dimensional unit sphere, [math] , under homogeneous Neumann boundary conditions. In particular, we characterize the lower-order term appearing in the Euler–Lagrange formulation in terms of the “geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a shortest path between two points on [math] with respect to a metric w…

Unit spherenonconvex variational problemsriemannian manifolds with boundaryGeodesicn-sphereharmonic flows68U1053C2253C4435K9235K67Neumann boundary conditionpartial differential equations49J45MathematicsNumerical Analysisnonlinear parabolic systems; lower semicontinuity and relaxation; total variation flow; 1-harmonic flow; image processing; harmonic flows; partial differential equations; image processing.; geodesics; riemannian manifolds with boundary; nonconvex variational problemslower semicontinuity and relaxation58E20Applied MathematicsMathematical analysis49Q201-harmonic flowimage processingFlow (mathematics)35K55Metric (mathematics)total variation flowVector fieldnonlinear parabolic systemsBalanced flowAnalysisgeodesics
researchProduct

Nonlinear diffusion in transparent media: the resolvent equation

2017

Abstract We consider the partial differential equation u - f = div ⁡ ( u m ⁢ ∇ ⁡ u | ∇ ⁡ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.

Dirichlet problemPure mathematicsTotal variation; transparent media; linear growth Lagrangian; comparison principle; Dirichlet problems; Neumann problems35J25 35J60 35B51 35B99Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsBoundary (topology)01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsBounded functionBounded variationFOS: MathematicsNeumann boundary conditionUniquenessNabla symbol0101 mathematicsAnalysisAnalysis of PDEs (math.AP)ResolventMathematics
researchProduct

Rotationally symmetric 1-harmonic flows from D2 TO S 2: Local well-posedness and finite time blowup

2010

The 1-harmonic flow from the disk to the sphere with constant Dirichlet boundary conditions is analyzed in the case of rotational symmetry. Sufficient conditions on the initial datum are given, such that a unique classical solution exists for short times. Also, a sharp criterion on the boundary condition is identified, such that any classical solution will blow up in finite time. Finally, nongeneric examples of finite time blowup are exhibited for any boundary condition.

Well-posed problemDirichlet problemApplied MathematicsMathematical analysisMathematics::Analysis of PDEsRotational symmetryMixed boundary conditionrotational symmetryferromagnetism; blowup; 1-harmonic flow; image processing; local existence; dirichlet problem; partial differential equations; rotational symmetryferromagnetism1-harmonic flowblowupimage processingComputational Mathematicssymbols.namesakeFlow (mathematics)Dirichlet boundary conditionsymbolspartial differential equationsInitial value problemBoundary value problemdirichlet problemAnalysislocal existenceMathematics
researchProduct

The 1-Harmonic Flow with Values into $\mathbb S^{1}$

2013

We introduce a notion of solution for the $1$-harmonic flow, i.e., the formal gradient flow of the total variation functional with respect to the $L^2$-distance, from a domain of $\mathbb R^m$ into a geodesically convex subset of an $N$-sphere. For such a notion, under homogeneous Neumann boundary conditions, we prove both existence and uniqueness of solutions when the target space is a semicircle and the existence of solutions when the target space is a circle and the initial datum has no jumps of an “angle” larger than $\pi$. Earlier results in [J. W. Barrett, X. Feng, and A. Prohl, SIAM J. Math. Anal., 40 (2008), pp. 1471--1498] and [X. Feng, Calc. Var. Partial Differential Equations, 37…

Computational MathematicsPartial differential equationFlow (mathematics)Applied MathematicsMathematical analysisNeumann boundary conditionHarmonic mapHarmonic (mathematics)UniquenessBalanced flowSpace (mathematics)AnalysisMathematicsSIAM Journal on Mathematical Analysis
researchProduct