0000000000467485

AUTHOR

Raoul Ranjeva

showing 8 related works from this author

Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells.

2005

We previously reported elevated cytosolic calcium levels in tobacco cells in response to elicitors [D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, A. Pugin, Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell 14 (2002) 2627-2641]. These data suggested that in response to elicitors, Ca2+, as a second messenger, was involved in both systemic acquired resistance (RSA) and/or hypersensitive response (HR) depending on calcium signature. Here, we used transformed tobacco cells with apoaequorin expressed in the nucleus to monitor changes in free nuclear calcium concentrations ([Ca2+](nuc)) in response to elicitors. Two …

Hypersensitive responsePhysiologyAequorinMutant Chimeric Proteinschemistry.chemical_elementOligosaccharidesCalciumTobaccoCalcium SignalingPhosphorylationMolecular BiologyCells CulturedCalcium signalingPlant ProteinsCell Nucleusbiologyfood and beveragesCell BiologyElicitorCytosolchemistryBiochemistrySecond messenger systemGene Targetingbiology.proteinSystemic acquired resistanceCell calcium
researchProduct

Calcium homeostasis in plant cell nuclei

2009

International audience; In plant cells, calcium-based signaling pathways are involved in a large array of biological processes, including cell division, polarity, growth, development and adaptation to changing biotic and abiotic environmental conditions. Free calcium changes are known to proceed in a nonstereotypical manner and produce a specific signature, which mirrors the nature, strength and frequency of a stimulus. The temporal aspects of calcium signatures are well documented, but their vectorial aspects also have a profound influence on biological output. Here, we will focus on the regulation of calcium homeostasis in the nucleus. We will discuss data and present hypotheses suggestin…

0106 biological sciencesCELL NUCLEUSHOMEOSTASISAUTONOMYCell divisionPhysiologyAequorinchemistry.chemical_elementPlant ScienceCalcium01 natural sciencesCALCIUM03 medical and health sciencesCytosolPlant CellsOrganellemedicineCalcium SignalingCELLULE VEGETALE030304 developmental biologyCalcium metabolism0303 health sciencesbiologyAEQUORINEAEQUORINCell biology[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacymedicine.anatomical_structurechemistryHOMEOSTASIEbiology.proteinSignal transductionNucleusHomeostasis010606 plant biology & botanySignal Transduction
researchProduct

Intracellular compartmentation and plant cell signalling

1997

Compartmentation is an essential feature of eukaryotic cells, and is crucial for the regulation of cell metabolism. Recent progress has significantly improved the understanding of signal transduction pathways in plants, including the activation of light-signalling networks and the tightly controlled generation of the calcium message. Cell compartmentation is important for the regulation and proliferation of these signalling processes.

0106 biological sciences0303 health scienceschemistry.chemical_elementPlant ScienceBiologyCalciumPlant cell01 natural sciencesIntracellular compartmentationElicitorCell biology03 medical and health sciencesSignallingCell metabolismBiochemistrychemistryCell Compartmentation[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologySignal transduction030304 developmental biology010606 plant biology & botany
researchProduct

Nuclear protein kinases: still enigmatic components in plant cell signalling

2010

International audience; Plants constantly face changing conditions in their environment. Unravelling the transduction mechanisms from signal perception at the plasma membrane level down to gene expression in the nucleus is a fascinating challenge. Protein phosphorylation, catalysed by protein kinases, is one of the major posttranslational modifications involved in the specificity, kinetic(s) and intensity of a signal transduction pathway. Although commonly assumed, the involvement of nuclear protein kinases in signal transduction is often poorly characterized. In particular, both their regulation and mode of action remain to be elucidated and may lead to the unveiling of new original mechan…

0106 biological sciencesPhysiologyp38 mitogen-activated protein kinasesPROTEIN KINASENUCLEAR TRANSLOCATIONPlant ScienceBiology01 natural sciencesSecond Messenger Systems03 medical and health sciencesNCK1Protein phosphorylationNuclear proteinNUCLEUS030304 developmental biologyPROTEIN (DE)PHOSPHORYLATION0303 health sciencesGRB10SIGNAL TRANSDUCTIONNuclear ProteinsAutophagy-related protein 13PlantsCell biology[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyBiochemistryCDC37Mitogen-activated protein kinasebiology.proteinProtein Kinases010606 plant biology & botany
researchProduct

Calcium in plant defence‐signalling pathways

2006

In plant cells, the calcium ion is a ubiquitous intracellular second messenger involved in numerous signalling pathways. Variations in the cytosolic concentration of Ca2+ ([Ca2+]cyt) couple a large array of signals and responses. Here we concentrate on calcium signalling in plant defence responses, particularly on the generation of the calcium signal and downstream calcium-dependent events participating in the establishment of defence responses with special reference to calcium-binding proteins.

Programmed cell deathPhysiologyGene Expressionchemistry.chemical_elementPlant ScienceBiologyCalciumNitric OxideCytosolPhytoalexinsCalcium-binding proteinCalcium SignalingPhosphorylationPlant DiseasesPlant ProteinsCalcium signalingCell DeathPlant ExtractsTerpenesCalcium-Binding ProteinsPlantsPlant cellElicitorCytosolchemistryBiochemistryCalciumMitogen-Activated Protein KinasesSignal transductionReactive Oxygen SpeciesSesquiterpenesNew Phytologist
researchProduct

Cryptogein, a fungal elicitor, remodels the phenylpropanoid metabolism of tobacco cell suspension cultures in a calcium-dependent manner

2010

Plant cells use calcium-based signalling pathways to transduce biotic and/or abiotic stimuli into adaptive responses. However, little is known about the coupling between calcium signalling, transcriptional regulation and the downstream biochemical processes. To understand these relationships better, we challenged tobacco BY-2 cells with cryptogein and evaluated how calcium transients (monitored through the calcium sensor aequorin) impact (1) transcript levels of phenylpropanoid genes (assessed by RT-qPCR); and (2) derived-phenolic compounds (analysed by mass spectrometry). Most genes of the phenylpropanoid pathway were up-regulated by cryptogein and cell wall-bound phenolic compounds accumu…

0106 biological sciencesCalcium metabolism0303 health sciencesFungal proteinbiologyPhenylpropanoidPhysiologyAequorinchemistry.chemical_elementPlant ScienceCalcium01 natural sciencesElicitor03 medical and health scienceschemistryBiochemistryTranscriptional regulationbiology.protein030304 developmental biology010606 plant biology & botanyCalcium signalingPlant, Cell & Environment
researchProduct

Calcium signaling in plant cell organelles delimited by a double membrane.

2006

AbstractIncreases in the concentration of free calcium in the cytosol are one of the general events that relay an external stimulus to the internal cellular machinery and allow eukaryotic organisms, including plants, to mount a specific biological response. Different lines of evidence have shown that other intracellular organelles contribute to the regulation of free calcium homeostasis in the cytosol. The vacuoles, the endoplasmic reticulum and the cell wall constitute storage compartments for mobilizable calcium. In contrast, the role of organelles surrounded by a double membrane (e.g. mitochondria, chloroplasts and nuclei) is more complex. Here, we review experimental data showing that t…

OrganellesEndoplasmic reticulumCell Membranechemistry.chemical_elementCell BiologyCell compartmentationCalciumBiologyPlantsCalcium in biologyDynamics of cytosolic and organelle calciumCell biologyCytosolCytosolchemistryCytoplasmOrganellePlant cell organizationCalciumCalcium SignalingMolecular BiologyCellular compartmentCalcium signalingPlant cell signalingBiochimica et biophysica acta
researchProduct

Signalisation calcique cytosolique et nucléaire et réponses des plantes aux stimulus biotiques et abiotiques

2006

General MedicineBiologyGeneral Biochemistry Genetics and Molecular Biologymédecine/sciences
researchProduct