0000000000468436

AUTHOR

Tomas Tamulevičius

0000-0003-3879-2253

Surface Lattice Resonances in Self-Assembled Arrays of Monodisperse Ag Cuboctahedra

Plasmonic metal nanoparticles arranged in periodic arrays can generate surface lattice plasmon resonances (SLRs) with high Q-factors. These collective resonances are interesting because the associated electromagnetic field is delocalized throughout the plane of the array, enabling applications such as biosensing and nanolasing. In most cases such periodic nanostructures are created via top-down nanofabrication processes. Here we describe a capillary-force-assisted particle assembly method (CAPA) to assemble monodisperse single-crystal colloidal Ag cuboctahedra into nearly defect-free >1 cm2 hexagonal lattices. These arrays are large enough to be measured with conventional ultraviolet-visibl…

research product

Optical properties of thin metal films with nanohole arrays on porous alumina–aluminum structures

A multilayer system is formed by the deposition of a 10–35 nm thin Au or Ag film with 18–25 nm diameter holes on 75–280 nm thick layers of porous anodized aluminum oxide (AAO) supported by a bulk sheet of aluminum. We present a detailed study of system parameters, which influence the optical response, including the porosity, metal layer thickness and crystallographic orientation of the Al substrate. The spectral properties are mainly governed by the interference of the reflections from the Al substrate and the thin metal film separated by the AAO layer. An enhanced plasmonic attenuation component near 650 nm for the Au films with holes can be observed when the interferometric anti-reflectio…

research product