0000000000468555

AUTHOR

Benito M. Chen-charpentier

Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: A computational approach

Due to errors in measurements and inherent variability in the quantities of interest, models based on random differential equations give more realistic results than their deterministic counterpart. The generalized polynomial chaos (gPC) is a powerful technique used to approximate the solution of these equations when the random inputs follow standard probability distributions. But in many cases these random inputs do not have a standard probability distribution. In this paper, we present a step-by-step constructive methodology to implement directly a useful version of adaptive gPC for arbitrary distributions, extending the applicability of the gPC. The paper mainly focuses on the computation…

research product

Uncertainty quantification in simulations of epidemics using polynomial chaos.

Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equa…

research product