0000000000468574

AUTHOR

Lukasz Marciniak

A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer.

The chemical architecture of lanthanide doped core–shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ∼980 to the more relevant ∼808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb–Er co-doped core nanoparticles with the Yb–Nd co-doped shell, we have intentionally combined temperature dependent Er u…

research product

Ce:Y3Al5O12−Poly(methyl methacrylate) Composite for White-Light-Emitting Diodes

A Ce:YAG-poly(methyl methacrylate) (PMMA) composite was prepared by using the melt compounding method. The structure and morphology were investigated by X-ray diffractometry, transmission electron microscopy, and small-angle X-ray scattering. The optical properties (emission, excitation, and fluorescence decay rate) of the composite were studied by using photoluminescence spectroscopy. The polymer–filler interactions were studied using 13C cross-polarization magic-angle spinning NMR spectroscopy (13C{1H} CP-MAS NMR). The results indicated that Ce:YAG particles are well-dispersed in the PMMA matrix without loss of their luminescence properties or significant spectral shift, thus suggesting t…

research product