0000000000468575

AUTHOR

Graham A. Worth

On the Intrinsically Low Quantum Yields of Pyrimidine DNA Photodamages: Evaluating the Reactivity of the Corresponding Minimum Energy Crossing Points

The low quantum yield of photoformation of cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4) adducts in DNA bases is usually associated with the presence of more favorable nonreactive decay paths and with the unlikeliness of exciting the system in a favorable conformation. Here, we prove that the ability of the reactive conical intersection to bring the system either back to the absorbing conformation or to the photoproduct must be considered as a fundamental factor in the low quantum yields of the mentioned photodamage. In support of the proposed model, the one order of magnitude difference in the quantum yield of formation of the cyclobutane thymine dimer with respect to the t…

research product

How important is roaming in the photodegradation of nitrobenzene?

At low excitation energies nitrobenzene photoreleases NO with low translational and rotational energy, while at higher excitation energies NO is photoreleased with both low and high translational and rotational energy. The fast products are formed through a singlet-triplet crossing (STC) region featuring an oxaziridine ring, while a ground state roaming mechanism was suggested to produce the slow molecules. Computing translational and rotational energies performing CASSCF classical dynamics, we here prove how the same oxaziridine STC can account for both fast and slow photoproducts, depending on the region of the seam through which the ground state is populated. A roaming-type STC/CI has al…

research product

Similar chemical structures, dissimilar triplet quantum yields: a CASPT2 model rationalizing the trend of triplet quantum yields in nitroaromatic systems

The photophysics of nitroaromatics compounds stand out for being characterized by an ultrafast decay into the triplet manifold and by a significant value of the triplet quantum yield. The latter quantity can change dramatically from one system to another, as proven for the molecules 2- nitronaphthalene, 1-nitronaphthalene, and 2methyl-1nitronaphthale, whose triplet quantum yield have been previously measured to be 0.93 ± 0.15, 0.64 ± 0.12, and 0.33 ± 0.05, respectively (J. Phys. Chem. A 2013, 117, 14100). In the present contribution we rationalize the reported trend for the triplet quantum yield on the basis of the different ability that the excited S 1 state has in the three molecules to r…

research product