0000000000469998

AUTHOR

Damir Bosnar

showing 45 related works from this author

Lowest- Q2 measurement of the γp → Δ reaction: Probing the pionic contribution

2006

To determine nonspherical angular momentum amplitudes in hadrons at long ranges (low Q^2), data were taken for the p(\vec{e},e'p)\pi^0 reaction in the Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are: M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model}) (10^{-3}/m_{\pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst} +/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/- 0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of constituent quark models but are in reaso…

PhysicsDipoleAngular momentumNuclear and High Energy PhysicsPionHadronQuadrupoleLattice (group)Constituent quarkHigh Energy Physics::ExperimentAtomic physicsNuclear ExperimentMagnetic dipoleThe European Physical Journal A
researchProduct

Measurement of the Generalized Polarizabilities of the Proton at Intermediate $Q^2$

2021

Background: Generalized polarizabilities (GPs) are important observables to describe the nucleon structure, and measurements of these observables are still scarce. Purpose: This paper presents details of a virtual Compton scattering (VCS) experiment, performed at the A1 setup at the Mainz Microtron by studying the $e p \to e p \gamma$ reaction. The article focuses on selected aspects of the analysis. Method: The experiment extracted the $P_{LL} -P_{TT} / \epsilon$ and $P_{LT}$ structure functions, as well as the electric and magnetic GPs of the proton, at three new values of the four-momentum transfer squared $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$. Results: We emphasize the importance of the ca…

MAINZ-A1ProtonNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]higher-orderHadronic Physics and QCDFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]momentum transfer dependence01 natural scienceselectron p: scatteringNuclear Theory (nucl-th)Cross section (physics)High Energy Physics - Phenomenology (hep-ph)Polarizability0103 physical sciencesCalibrationp: structure functionNuclear Experiment (nucl-ex)010306 general physicsMicrotronNuclear ExperimentPhysics010308 nuclear & particles physicsCompton scatteringObservablecross section: measuredcalibrationComputational physicsHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]p: polarizabilityelectron p --> electron p photonNucleonCompton scatteringexperimental results
researchProduct

New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels: Preliminary results in the RRR

2016

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70’s, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its “High Priority Request List” and its report WPEC-26 that the capture cross section of 242Pu…

Nuclear reactionnTOFQC1-999Nuclear engineeringContext (language use)CERN nTOFNeutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyPhysics and Astronomy (all)Nuclear reactorsReactors nuclears0103 physical sciencesCERNNeutron cross sectionNuclear Physics - ExperimentNeutronddc:530242Pu neutron capture010306 general physicsMOX fuelNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Fissile materialCross section:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionSpent nuclear fuelNeutron temperature13. Climate actionneutron time-of-flight measurement
researchProduct

Particle tracking in kaon electroproduction with cathode-charge sampling in multi-wire proportional chambers

2011

Abstract Wire chambers are routinely operated as tracking detectors in magnetic spectrometers at high-intensity continuous electron beams. Especially in experiments studying reactions with small cross-sections the reaction yield is limited by the background rate in the chambers. One way to determine the track of a charged particle through a multi-wire proportional chamber (MWPC) is the measurement of the charge distribution induced on its cathodes. In practical applications of this read-out method, the algorithm to relate the measured charge distribution to the avalanche position is an important factor for the achievable position resolution and for the track reconstruction efficiency. An al…

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Physics - Instrumentation and DetectorsSpectrometerPhysics::Instrumentation and DetectorsFOS: Physical sciencesCharge densityInstrumentation and Detectors (physics.ins-det)ElectronTracking (particle physics)Charged particleParticle detectorNuclear physicsCathode rayNuclear Experiment (nucl-ex)tracking and position-sensitive detectors; multi-wire proporational chambersNuclear ExperimentInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Beam-normal single spin asymmetry in elastic electron scattering off 28Si and 90Zr

2020

We report on a new measurement of the beam-normal single spin asymmetry $A_{\mathrm{n}}$ in the elastic scattering of 570 MeV transversely polarized electrons off $^{28}$Si and $^{90}$Zr at $Q^{2}=0.04\, \mathrm{GeV}^2/c^2$. The studied kinematics allow for a comprehensive comparison with former results on $^{12}$C. No significant mass dependence of the beam-normal single spin asymmetry is observed in the mass regime from $^{12}$C to $^{90}$Zr.

Nuclear and High Energy Physicsmedia_common.quotation_subjectFOS: Physical sciencesElastic electronElectronKinematics01 natural sciencesAsymmetry0103 physical sciencesTransverse asymmetryNuclear Experiment (nucl-ex)Elastic scatteringMulti-photon exchange010306 general physicsNuclear ExperimentSpin-½media_commonPolarized beamPhysicsElastic scattering010308 nuclear & particles physicsScatteringTransverse asymmetry Elastic scattering Polarized beam Multi-photon exchangeNATURAL SCIENCES. Physics.lcsh:QC1-999PRIRODNE ZNANOSTI. Fizika.High Energy Physics::ExperimentAtomic physicslcsh:PhysicsBeam (structure)Physics Letters B
researchProduct

7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN

2017

One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…

AstrofísicanTOFQC1-999chemistry.chemical_elementNeutronAstrophysics01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Big Bang nucleosynthesisNucleosynthesisCERN0103 physical sciencesNuclear astrophysicsAstrophysics::Solar and Stellar AstrophysicsNeutron010306 general physicsNuclear ExperimentAstrophysics::Galaxy Astrophysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsPhysicsAlphaLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsStarschemistryLithiumHaloNucleosynthesisNucleosíntesi
researchProduct

Components of polarization-transfer to a bound proton in a deuteron measured by quasi-elastic electron scattering

2018

We report the first measurements of the transverse (Px and Py) and longitudinal (Pz) components of the polarization transfer to a bound proton in the deuteron via the H2(e→,e′p→) reaction, over a wide range of missing momentum. A precise determination of the electron beam polarization reduces the systematic uncertainties on the individual components to a level that enables a detailed comparison to a state-of-the-art calculation of the deuteron using free-proton electromagnetic form factors. We observe very good agreement between the measured and the calculated Px/Pz ratios, but deviations of the individual components. Our results cannot be explained by medium modified electromagnetic form f…

PhysicsNuclear reactionNuclear and High Energy PhysicsProton010308 nuclear & particles physicsScatteringHadronNuclear TheoryFOS: Physical sciencesElectronPolarization (waves)7. Clean energy01 natural scienceslcsh:QC1-999Deuterium0103 physical sciencespolarization-transfer ; deutronAtomic physicsNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear Experimentlcsh:PhysicsPhysics Letters
researchProduct

Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g-2 anomaly.

2014

A massive, but light, Abelian U(1) gauge boson is a well-motivated possible signature of physics beyond the standard model of particle physics. In this Letter, the search for the signal of such a U(1) gauge boson in electron-positron pair production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron is described. Exclusion limits in the mass range of 40  MeV/c^{2} to 300  MeV/c^{2}, with a sensitivity in the squared mixing parameter of as little as ε^{2}=8×10^{-7} are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge …

PhysicsGauge bosonParticle physicsMuonAnomalous magnetic dipole momentPhysics beyond the Standard ModelGeneral Physics and AstronomyDark photonNATURAL SCIENCES. Physics.Nuclear physicsPRIRODNE ZNANOSTI. Fizika.U(1)SPair productiondark photondark photon; U(1)SAnomaly (physics)Nuclear ExperimentMicrotronPhysical review letters
researchProduct

The n_TOF facility: Neutron beams for challenging future measurements at CERN

2016

The CERN n TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental prog…

AstrofísicanTOF[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]QC1-999Nuclear TheoryNeutronAstrophysics01 natural sciences7. Clean energylaw.inventionNuclear physicsPhysics and Astronomy (all)Neutron fluxlaw0103 physical sciencesCERNNuclear astrophysicsNeutronSpallation010306 general physicsNuclear ExperimentPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear dataNuclear reactorNeutron radiationAccelerators and Storage Rings3. Good health13. Climate action
researchProduct

Determination of quadrupole strengths in the γ∗p→Δ(1232) transition at Q2=0.20(GeV/c)2

2007

Abstract We report new precise p ( e → , e ′ p ) π 0 measurements at the peak of the Δ + ( 1232 ) resonance at Q 2 = 0.20 ( GeV / c ) 2 performed at the Mainz Microtron (MAMI). The new data are sensitive to both the electric (E2) and the Coulomb (C2) quadrupole amplitudes of the γ ∗ N → Δ transition. They yield precise quadrupole to dipole amplitude ratios: CMR = ( − 5.09 ± 0.28 stat + sys ± 0.30 model ) % and EMR = ( − 1.96 ± 0.68 stat + sys ± 0.41 model ) % for M 1 + 3 / 2 = ( 39.57 ± 0.75 stat + sys ± 0.40 model ) ( 10 −3 / m π + ) . The new results are in disagreement with Constituent Quark Model predictions and in qualitative agreement with models that account for mesonic contributions…

Nuclear physicsPhysicsNuclear and High Energy PhysicsDipoleAmplitudeQuark modelHadronQuadrupoleCoulombConstituent quarkHigh Energy Physics::ExperimentNuclear ExperimentMicrotronPhysics Letters B
researchProduct

First measurement of proton's charge form factor at very low $Q^2$ with initial state radiation

2017

We report on a new experimental method based on initial-state radiation (ISR) in e-p scattering, in which the radiative tail of the elastic e-p peak contains information on the proton charge form factor ($G_E^p$) at extremely small $Q^2$. The ISR technique was validated in a dedicated experiment using the spectrometers of the A1-Collaboration at the Mainz Microtron (MAMI). This provided first measurements of $G_E^p$ for $0.001\leq Q^2\leq 0.004 (GeV/c)^2$.

experimental methodsProtonelastic scattering01 natural sciencesHigh Energy Physics - ExperimentLamb shiftHigh Energy Physics - Experiment (hep-ex)Initial state radiation ; Proton ; Form factor ; Radiative correctionsRadiative transfer[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentMicrotronElastic scatteringPhysicsForm factor (quantum field theory)beam: currentRadiative correctionslcsh:QC1-9993. Good healthPRIRODNE ZNANOSTI. Fizika.ProtonNuclear and High Energy PhysicsFOS: Physical sciencesBethe-Heitler25.30.BfRadiation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physicselectron p: scatteringMainz Linac[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]12.20.-m0103 physical sciencesradiation: initial-state interaction010306 general physicsnumerical calculationsform factor: charge41.60.-m010308 nuclear & particles physicsScatteringp: chargeNATURAL SCIENCES. Physics.microtronForm factorLamb shiftspectrometerInitial state radiationlcsh:Physicsexperimental results
researchProduct

Radiative neutron capture on 242Pu in the resonance region at the CERN n_TOF-EAR1 facility

2018

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of 242Pu there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluat…

PRIRODNE ZNANOSTI. Fizika.neutron capture 242Pu resonance analysis n_TOFresonance analysisn_TOF242PuNATURAL SCIENCES. Physics.neutron capture
researchProduct

Ground-state binding energy of HΛ4 from high-resolution decay-pion spectroscopy

2016

Abstract A systematic study on the Λ ground state binding energy of hyperhydrogen H Λ 4 measured at the Mainz Microtron MAMI is presented. The energy was deduced from the spectroscopy of mono-energetic pions from the two-body decays of hyperfragments, which were produced and stopped in a 9Be target. First data, taken in the year 2012 with a high resolution magnetic spectrometer, demonstrated an almost one order of magnitude higher precision than emulsion data, while being limited by systematic uncertainties. In 2014 an extended measurement campaign was performed with improved control over systematic effects, increasing the yield of hypernuclei and confirming the observation with two indepen…

PhysicsNuclear and High Energy PhysicsSpectrometer010308 nuclear & particles physicsBinding energy01 natural sciencesNuclear physicsPion0103 physical sciencesSymmetry breaking010306 general physicsSpectroscopyGround stateMicrotronOrder of magnitudeNuclear Physics A
researchProduct

Measurement of the α ratio and (n,γ) cross section of 235U from 0.2 to 200 eV at n_TOF

2020

We measured the neutron capture-to-fission cross-section ratio (α ratio) and the capture cross section of 235U between 0.2 and 200 eV at the n_TOF facility at CERN. The simultaneous measurement of neutron-induced capture and fission rates was performed by means of the n_TOF BaF2 Total Absorption Calorimeter (TAC), used for detection of γ rays, in combination with a set of micromegas detectors used as fission tagging detectors. The energy dependence of the capture cross section was obtained with help of the 6Li(n, t) standard reaction determining the n_TOF neutron fluence ; the well-known integral of the 235U(n, f) cross section between 7.8 and 11 eV was then used for its absolute normalizat…

n_TOF α ratio 235U neutron time of flight
researchProduct

Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron

2011

A new exclusion limit for the electromagnetic production of a light U(1) gauge boson {\gamma}' decaying to e^+e^- was determined by the A1 Collaboration at the Mainz Microtron. Such light gauge bosons appear in several extensions of the standard model and are also discussed as candidates for the interaction of dark matter with standard model matter. In electron scattering from a heavy nucleus, the existing limits for a narrow state coupling to e^+e^- were reduced by nearly an order of magnitude in the range of the lepton pair mass of 210 MeV/c^2 < m_e^+e^- < 300 MeV/c^2. This experiment demonstrates the potential of high current and high resolution fixed target experiments for the search fo…

Particle physicsPhysics beyond the Standard Modelgauge bosonsFOS: Physical sciencesGeneral Physics and AstronomyElementary particle01 natural sciences7. Clean energyHigh Energy Physics - ExperimentStandard ModelNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesGrand Unified TheoryNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentMicrotronBosonPhysicsGauge boson010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyNATURAL SCIENCES. Physics.PRIRODNE ZNANOSTI. Fizika.electron scattering; gauge bosonselectron scatteringLepton
researchProduct

STATUS OF STRANGENESS ELECTRO-PRODUCTION AT MAMI

2009

At the Institut für Kernphysik in Mainz, Germany, the microtron MAMI has been upgraded to 1.5 GeV electron beam energy and can now be used to study strange hadronic systems. The magnetic spectrometer KAOS from GSI was dismantled and re-installed in the spectrometer facility operated by the A1 collaboration. The spectrometer's primary purpose is to study strangeness electro-production. Its compact design and its capability to detect negative and positive charged particles simultaneously under forward scattering angles complements the existing spectrometers. In 2008, an important milestone has been reached by the successful measurement of kaon production off a liquid hydrogen target. The ide…

magnetic spectrometer; particle detector design; kaon electro-production; hypernuclei electro-productionPhysicsNuclear and High Energy PhysicsParticle physicsSpectrometerPhysics::Instrumentation and DetectorsScatteringNuclear TheoryHadronDetectorGeneral Physics and AstronomyStrangenessCharged particleNuclear physicsPhysics::Accelerator PhysicsVacuum chamberNuclear ExperimentMicrotronStrangeness in Nuclear and Hadronic Systems
researchProduct

Be7(n,α)He4Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN

2016

The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been…

Nuclear reactionPhysics010308 nuclear & particles physicsGeneral Physics and Astronomychemistry.chemical_elementAlpha particleNeutron radiation7. Clean energy01 natural sciencesNeutron temperatureNuclear physicsBig Bang nucleosynthesischemistry13. Climate actionNucleosynthesis0103 physical sciencesNeutronLithiumNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

High-Precision Determination of the Electric and Magnetic Form Factors of the Proton

2010

New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.

Particle physicsProtonMesonelastic electron scattering13.40.Gp 14.20.Dh 25.30.BfHadronGeneral Physics and AstronomyFOS: Physical sciencesElementary particle[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicselastic electron scattering; proton electromagnetic form factors010308 nuclear & particles physicsForm factor (quantum field theory)Charge (physics)NATURAL SCIENCES. Physics.PRIRODNE ZNANOSTI. Fizika.Crystallographyproton electromagnetic form factorsHigh Energy Physics::ExperimentNucleonDimensionless quantity
researchProduct

Neutron capture cross section measurement ofU238at the CERN n_TOF facility in the energy region from 1 eV to 700 keV

2017

The aim of this work is to provide a precise and accurate measurement of the U238(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the u…

Physics010308 nuclear & particles physicsGamma rayNuclear dataScintillator7. Clean energy01 natural sciencesResonance (particle physics)Nuclear physicsNeutron captureNuclear reactor core0103 physical sciencesNeutron cross sectionNeutron010306 general physicsPhysical Review C
researchProduct

Unpolarized and polarized elementary kaon electroproduction cross sections measured at MAMI

2012

Present and future research into the electroproduction of kaons plays an im- portant role at Mainz Microtron MAMI. With the Kaos spectrometer employed for kaon detection in the multi-spectrometer facility, cross section measurements of the exclusive p(e;e 0 K + ); 0 reactions at low momentum transfers have been performed. Isobar and Regge-plus-resonance models were compared with the data. These measurements have clearly discriminated between e ective Lagrangian models for photo- and electroproduc- tion of strangeness. New experiments with polarized beam at low four-momentum transfer are addressing the imaginary part of the longitudinal-transverse response in this process, that can be separa…

Coupling constantPhysicsParticle physicsPhysicsQC1-999HadronNuclear TheoryStrangenessHelicityMomentumNuclear physicsIsobarHigh Energy Physics::ExperimentNuclear ExperimentMicrotronBeam (structure)EPJ Web of Conferences
researchProduct

Measurement of the 238U(n, γ) cross section up to 80 keV with the Total Absorption Calorimeter at the CERN n_TOF facility

2017

The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5)×10^−4 atoms/barn areal density 238U sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 …

PRIRODNE ZNANOSTI. Fizika.Total Absorption Calorimeter238U(n γ) ; total absorption calorimeter ; n_TOF ; CERNCERNn_TOFγ)238U(nNATURAL SCIENCES. Physics.
researchProduct

Polarization-transfer measurement to a large-virtuality bound proton in the deuteron

2017

Possible differences between free and bound protons may be observed in the ratio of polarization-transfer components, $P'_x/P'_z$. We report the measurement of $P'_x/P'_z$, in the $^2\textrm{H}(\vec{e},e^{\prime}\vec{p})n$ reaction at low and high missing momenta. Observed increasing deviation of $P'_x/P'_z$ from that of a free proton as a function of the virtuality, similar to that observed in \hefour, indicates that the effect in nuclei is due to the virtuality of the knock-out proton and not due to the average nuclear density. The measured differences from calculations assuming free-proton form factors ($\sim10\%$), may indicate in-medium modifications.

PhysicsNuclear and High Energy PhysicsProton010308 nuclear & particles physicsNuclear TheoryFOS: Physical sciencesPolarization (waves)01 natural sciencesNATURAL SCIENCES. Physics.lcsh:QC1-999Nuclear physicsPRIRODNE ZNANOSTI. Fizika.Deuterium0103 physical sciencesd(e e’p) ; Electron-scatteringPhysics::Accelerator PhysicsNuclear Experiment (nucl-ex)Electron-scattering010306 general physicsNuclear Experimentd(ee'p)Electron scatteringNuclear ExperimentNuclear densitylcsh:PhysicsPhysics Letters B
researchProduct

Measurement of the p(e,e′π+)n reaction close to threshold and at low Q2

2017

The cross section of the $p(e,e'\pi^+)n$ reaction has been measured for five kinematic settings at an invariant mass of $W = 1094$ MeV and for a four-momentum transfer of $Q^2 = 0.078$ (GeV/$c$)$^2$. The measurement has been performed at MAMI using a new short-orbit spectrometer (SOS) of the A1 collaboration, intended for detection of low-energy pions. The transverse and longitudinal cross section terms were separated using the Rosenbluth method and the transverse-longitudinal interference term has been determined from the left-right asymmetry. The experimental cross section terms are compared with the calculations of three models: DMT2001, MAID2007 and $\chi$MAID. The results show that we …

Particle physicsNuclear and High Energy Physicsmedia_common.quotation_subjectKinematicsInterference (wave propagation)01 natural sciencesAsymmetryNuclear physicsCross section (physics)Low-energy pionsPion0103 physical sciencesInvariant mass010306 general physicsNuclear ExperimentNuclear Experimentmedia_commonPhysicsSpectrometer010308 nuclear & particles physicslcsh:QC1-999NATURAL SCIENCES. Physics.PRIRODNE ZNANOSTI. Fizika.Electroproduction experimentsTransverse planeShort-orbit spectrometer ; Low-energy pions ; Electroproduction experimentsShort-orbit spectrometerlcsh:Physics
researchProduct

The 33S(n,α)30Si cross section measurement at n TOF-EAR2 (CERN): From 0.01 eV to the resonance region

2017

The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT).

Nuclear reactionnTOFNeutron therapyQC1-999chemistry.chemical_elementNeutron01 natural sciencesResonance (particle physics)Nuclear physicsCross section (physics)Physics and Astronomy (all)0103 physical sciencesCERNNeutronddc:530010306 general physicsBoronPhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Range (particle radiation)Large Hadron Collidercross sectionReaccions nuclears:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionNeutron capturechemistryNuclear reactions
researchProduct

Overview of the electromagnetic production of strange mesons at MAMI

2013

Abstract The Mainz Microtron MAMI provides a continuous-wave unpolarized or spin-polarized electron beam with energies up to 1.6 GeV and high degrees of polarization. Electro-production of strange mesons is performed in the multi-spectrometer facility with the Kaos spectrometer for kaon detection and a high-resolution spectrometer for electron detection in plane or out of plane. Differential cross section measurements of exclusive p ( e , e ′ K + ) Λ , Σ 0 reactions at low four-momentum transfers in the nucleonʼs third resonance region have been done, followed by a measurement of the beam helicity asymmetry for p ( e → , e ′ K + ) Λ . These studies are important for the understanding of the…

PhysicsNuclear and High Energy PhysicsParticle physicsPhotonMesonHadronStrangenessLambda baryonHelicitySigma baryonNuclear physicsstrangeness reactions; kaon electro-production; missing mass spectroscopy; structure functionsNuclear ExperimentMicrotronNuclear Physics A
researchProduct

New Insight in the $Q^2$-Dependence of Proton Generalized Polarizabilities

2019

Virtual Compton scattering on the proton has been investigated at three yet unexplored values of the four-momentum transfer $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$, at the Mainz Microtron. Fits performed using either the low-energy theorem or dispersion relations allowed the extraction of the structure functions $P_{LL} -P_{TT} / \epsilon$ and $P_{LT}$, as well as the electric and magnetic generalized polarizabilities $\alpha_{E1}(Q^2)$ and $\beta_{M1}(Q^2)$. These new results show a smooth and rapid fall-off of $\alpha_{E1}(Q^2)$, in contrast to previous measurements at $Q^2$ = 0.33 GeV$^2$, and provide for the first time a precise mapping of $\beta_{M1}(Q^2)$ in the low-$Q^2$ region.

PhysicsProtonCompton scatteringFOS: Physical sciencesGeneral Physics and Astronomy25.30.Dh[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNATURAL SCIENCES. Physics.PRIRODNE ZNANOSTI. Fizika.Nuclear physics13.60.FzVirtual Compton Scattering VCS Proton Polarizability MAMI0103 physical sciences14.20.DhNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear Physics
researchProduct

A short-orbit spectrometer for low-energy pion detection in electroproduction experiments at MAMI

2017

A new Short-Orbit Spectrometer (SOS) has been constructed and installed within the experimental facility of the A1 collaboration at Mainz Microtron (MAMI), with the goal to detect low-energy pions. It is equipped with a Browne-Buechner magnet and a detector system consisting of two helium-ethane based drift chambers and a scintillator telescope made of five layers. The detector system allows detection of pions in the momentum range of 50 - 147 MeV/c, which corresponds to 8.7 - 63 MeV kinetic energy. The spectrometer can be placed at a distance range of 54 - 66 cm from the target center. Two collimators are available for the measurements, one having 1.8 msr aperture and the other having 7 ms…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsAperturePhysics::Instrumentation and DetectorsFOS: Physical sciencesScintillatorKinetic energy01 natural scienceslaw.inventionNuclear physicsTelescopePionlaw0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentInstrumentationMicrotronPhysicslow-energy pion detectionSpectrometer010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)3. Good healthPhysics::Accelerator Physics
researchProduct

Silicon Detector Telescope for proton detection in electron scattering reactions at MAMI

2012

Abstract A new Silicon Detector Telescope has been constructed and installed within the experimental facility of the A1 collaboration at Mainz Microtron, with the goal to detect low-energy protons. It consists of seven silicon layers for energy and angle measurement and a plastic scintillator for triggering purposes. The detector subtends a solid angle up to 88 msr, depending on the distance from the target and covers the proton kinetic energy range of 25–41  MeV with the mean energy resolution σ E = 0.47 MeV , operating at 500 kHz. Digital signal processing methods applied for energy reconstruction have been important for keeping the acceptable energy resolution at high counting rates. The…

Nuclear and High Energy PhysicsSiliconPhysics::Instrumentation and Detectorschemistry.chemical_elementScintillator01 natural scienceslaw.inventionNuclear physicsTelescopeOpticslaw0103 physical sciencessilicon detector; digital signal processing; electron scatteringNuclear Experiment010306 general physicsInstrumentationMicrotronPhysicsRange (particle radiation)Spectrometer010308 nuclear & particles physicsbusiness.industryDetectorSolid anglechemistryPhysics::Accelerator PhysicsbusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Polarization transfer in the 4HeH reaction

2001

Abstract Polarization transfer in the 4He ( e → ,e′ p → ) 3 H reaction at a Q2 of 0.4 (GeV/c)2 was measured at the Mainz Microtron MAMI. The ratio of the transverse to the longitudinal polarization components of the ejected protons was compared with the same ratio for elastic ep scattering. The results are consistent with a recent fully relativistic calculation which includes a predicted medium modification of the proton form factor based on a quark–meson coupling model.

PhysicsNuclear and High Energy PhysicsProtonScatteringNuclear Theorychemistry.chemical_elementPolarization (waves)Nuclear physicsTransverse planechemistryPhysics::Accelerator PhysicsNuclear ExperimentMicrotronHeliumPhysics Letters B
researchProduct

The 236U neutron capture cross-section measured at the n TOF CERN facility

2016

International audience; The $^{236}$U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the $^{236} \text{U}(n, \gamma)$ reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C$_6$D$_6$ detectors, employing the total energy deposited method, and a 4$\pi$ total absorption calorimeter (TAC), made of 40 BaF$_2$ crystals. The t…

Nuclear reactionnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Cross section (physics)0103 physical sciencesCERNNeutron cross sectionNuclear Physics - Experimentddc:530Neutron010306 general physicsAbsorption (electromagnetic radiation)PhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]IsotopeCross sectionReaccions nuclears:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsResonanceNuclear reactionCalorimeter13. Climate actionNuclear reactions
researchProduct

High precision measurement of the radiative capture cross section of 238U at the n_TOF CERN facility

2016

The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n-TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented. © The Authors, published by EDP Sciences, 2017.

Nuclear reactionnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsCross section (physics)Physics and Astronomy (all)Nuclear reactorsReactors nuclears0103 physical sciencesThermalCERNNeutronddc:530Nuclear Physics - Experiment010306 general physicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsRange (particle radiation)Large Hadron Collider:Física [Àrees temàtiques de la UPC]Cross section010308 nuclear & particles physicsPhysicsRadiative captureNuclear energyNuclear reactionEnergia nuclearEnergy (signal processing)
researchProduct

Fission fragment angular distribution of 232Th(n,f) at the CERN n TOF facility

2014

The angular distribution of fragments emitted in neutron-induced fission of 232Th was measured in the white spectrum neutron beam at the n_TOF facility at CERN. A reaction chamber based on Parallel Plate Avalanche Counters (PPAC) was used, where the detectors and the targets have been tilted 45 degrees with respect to the neutron beam direction in order to cover the full angular range of the fission fragments. A GEANT4 simulation has been developed to study the setup efficiency. The data analysis and the preliminary results obtained for the 232Th(n,f) between fission threshold and 100 MeV are presented here.

PhysicsNuclear reaction:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsNuclear and High Energy PhysicsLarge Hadron Collidercross sectionFragment (computer graphics)FissionPhysics::Instrumentation and DetectorsNuclear TheoryTOFNuclear data232Th; n_TOF; fission fragments; angular distributionNuclear physicsCross section (physics)Angular distributionneutronPhysics::Accelerator PhysicsfissionNeutronNuclear Experimentnuclear reactions
researchProduct

Radiative neutron capture on Pu242 in the resonance region at the CERN n_TOF-EAR1 facility

2018

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluat…

PhysicsNuclear fuelFissile material010308 nuclear & particles physicschemistry.chemical_elementUranium01 natural sciences7. Clean energySpent nuclear fuelNeutron temperatureNuclear physicsNeutron capturechemistry13. Climate action0103 physical sciencesNeutron010306 general physicsMOX fuelPhysical Review C
researchProduct

The measurement programme at the neutron time-of-flight facility n_TOF at CERN

2016

Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n TOF has produced a considerabl…

EngineeringNuclear transmutationQC1-999Nuclear engineering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physicsPhysics and Astronomy (all)0103 physical sciences:Física::Electromagnetisme [Àrees temàtiques de la UPC]ddc:530Nuclear Physics - ExperimentNeutron010306 general physicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Large Hadron Collider010308 nuclear & particles physicsbusiness.industryPhysicsNuclear dataRadioactive wasteNuclear technologyBeamlineCriticalitybusinessEPJ Web of Conferences
researchProduct

Recoil Polarization and Beam-Recoil Double Polarization Measurement ofηElectroproduction on the Proton in the Region of theS11(1535)Resonance

2007

The beam-recoil double polarization P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} and the recoil polarization P{sub y{sup '}} were measured for the first time for the p(e-vector,e{sup '}p-vector){eta} reaction at a four-momentum transfer of Q{sup 2}=0.1 GeV{sup 2}/c{sup 2} and a center of mass production angle of {theta}=120 deg. at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV<W<1550 MeV the region of the S{sub 11}(1535) and D{sub 13}(1520) resonance was covered. The results are discussed in the framework of a phenomenological isobar model (Eta-MAID). While P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} are in good agreement with the model, P{sub y{sup '…

PhysicsProton010308 nuclear & particles physicsHadronGeneral Physics and AstronomyElementary particleFermion7. Clean energy01 natural sciencesBaryonRecoil0103 physical sciencesIsobarAtomic physics010306 general physicsNucleonPhysical Review Letters
researchProduct

Prospects for hypernuclear physics at Mainz: From KAOS@MAMI to PANDA@FAIR

2013

Abstract At the Mainz Microtron hypernuclei are produced by ( e , e ′ K ) reactions. A dedicated kaon spectrometer located at 0° with respect to the electron beam is used to detect kaons emitted in forward direction thus tagging events involving strangeness production. By measuring the momenta of pions from two body weak decays using high resolution magnetic spectrometers one gains direct access to the ground state masses of the produced hyperfragments. At FAIR the PANDA Collaboration intends to produce double-hypernuclei by numbers with an antiproton beam and study their high resolution γ -spectroscopy thus providing for the first time precise information on the level structure of these nu…

PhysicsNuclear and High Energy PhysicsParticle physicsSpectrometerNuclear TheoryStrangeness productionHypernucleusNuclear physicsPionAntiproton beamhypernuclei; weak decay; spectroscopyKAOSGround stateNuclear ExperimentMicrotron
researchProduct

Vertical Beam Polarization at MAMI

2017

For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry $A_{\mathrm{n}}$, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction $^{12}\mathrm C(\vec e,e')^{12}\mathrm C$. Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has …

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhotonmedia_common.quotation_subjectVertical polarization[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]FOS: Physical sciencesElectron acceleratorElectronMott polarimeter01 natural sciencesAsymmetrylaw.inventionOpticsMøller polarimeterlaw0103 physical sciencesCompton polarimeter[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.PHYS.PHYS-ACC-PH ] Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Born approximation010306 general physicsNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentationmedia_commonPhysicsWien filter010308 nuclear & particles physicsbusiness.industryParticle acceleratorPolarimeterInstrumentation and Detectors (physics.ins-det)Wien filterPolarization (waves)Electron accelerator ; Vertical polarization ; Wien filter ; Compton polarimeter ; Mott polarimeter ; Møller polarimeterPhysics - Accelerator Physicsbusiness
researchProduct

Front-End Electronics for the KAOS Spectrometer at MAMI

2009

A new front-end electronics system has been developed for the electron arm tracking detectors in the Kaos spectrometer at the Mainz microtron MAMI. The signals of multi-anode photomultipliers are collected by 96-channel front-end boards, digitized by double-threshold discriminators and the signal time is picked up by F1 TDC chips. The system was designed to process more than 4,000 channels and to cope with the high electron flux in the spectrometer and the high count rate requirement of the detectors. A subset of 288 channels was installed and successfully used in the 2008 data taking period of the Kaos spectrometer.

PhysicsNuclear and High Energy PhysicsPhotomultiplierSpectrometerbusiness.industryDetectorElectrical engineeringTracking (particle physics)Signaldouble-threshold discriminator; front-end electronics; multi-anode photomultiplier; microtronNuclear Energy and EngineeringNuclear electronicsElectrical and Electronic EngineeringKAOSbusinessMicrotronIEEE Transactions on Nuclear Science
researchProduct

Measurement of the Neutron Electric to Magnetic Form Factor Ratio atQ2=1.58  GeV2Using the ReactionHe→3(e→,e′n)pp

2013

A measurement of beam helicity asymmetries in the reaction $^{3}\stackrel{\ensuremath{\rightarrow}}{\mathrm{He}}(\stackrel{\ensuremath{\rightarrow}}{e},{e}^{\ensuremath{'}}n)pp$ is performed at the Mainz Microtron in quasielastic kinematics to determine the electric to magnetic form factor ratio of the neutron ${G}_{E}^{n}/{G}_{M}^{n}$ at a four-momentum transfer ${Q}^{2}=1.58\text{ }\text{ }{\mathrm{GeV}}^{2}$. Longitudinally polarized electrons are scattered on a highly polarized $^{3}\mathrm{He}$ gas target. The scattered electrons are detected with a high-resolution magnetic spectrometer, and the ejected neutrons are detected with a dedicated neutron detector composed of scintillator ba…

PhysicsSystematic error010308 nuclear & particles physicsGeneral Physics and AstronomyElectron01 natural sciencesHelicityPolarized target0103 physical sciencesMagnetic form factorHigh Energy Physics::ExperimentNeutronAtomic physicsNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Characterization and First Test of an i-TED Prototype at CERN n_TOF

2018

International audience; Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C$_{6}$ D$_{6}$ detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton princ…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaDetectorGamma rayi-TED n_TOF characterizationNeutron radiationRadiation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]030218 nuclear medicine & medical imagingNuclear physics03 medical and health sciencesNeutron capture0302 clinical medicineNeutron cross sectionNeutronGamma spectroscopy[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]iTED n_TOF neutron
researchProduct

Kaon Tagging at 0° Scattering Angle for High-Resolution Decay-Pion Spectroscopy

2014

At the Mainz Microtron hypernuclei can be studied by (e,e'K) reactions. By detecting the kaon which is emitted in forward direction, with the KAOS spectrometer placed at 0 scattering angle, reactions involving open strangeness production are tagged. High-resolution magnetic spectrometers are then used to coincidentally detect the mono- energetic decay-pions from mesonic two-body weak decays of light hypernuclei at rest. As a pioneering experiment has confirmed, the KAOS spectrometer is exposed to a large flux of background particles, mostly positrons from bremsstrahlung pair production. In order to increase the e ciency of kaon identification the KAOS spectrometer was modi- fied to suppress…

PhysicsParticle physicsSpectrometerScatteringPhysicsQC1-999Nuclear TheoryBremsstrahlungStrangeness productionNuclear physicsMomentumPionPair productionElectron Scattering; Hypernuclei; MAMI; KAOS; Decay-Pion SpectroscopyHigh Energy Physics::ExperimentNuclear ExperimentMicrotronEPJ Web of Conferences
researchProduct

Measurement of the 241Am neutron capture cross section at the n-TOF facility at CERN

2016

New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241 Am(n,γ) cross section at the n TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental …

Nuclear reactionNuclear transmutationnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Cross section (physics)Nuclear reactorsReactors nuclears0103 physical sciencesCERNNeutron cross sectionNuclear Physics - Experimentddc:530Neutron010306 general physicsAbsorption (electromagnetic radiation)PhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Large Hadron ColliderCross section:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionCalorimeter
researchProduct

Nuclear data activities at the n_TOF facility at CERN

2016

International audience; Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluate…

Nuclear reactionU-235Nuclear transmutationnTOFCAPTURE CROSS-SECTIONNuclear dataTOTAL ABSORPTION CALORIMETERGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]COLLABORATION7. Clean energy01 natural sciences3100PHYSICSNuclear physicsPhysics and Astronomy (all)neutronDESIGNRadiation dosimetry0103 physical sciencesCERNn_TOFNuclear Physics - ExperimentNeutron010306 general physicsnuclear data n_TOF CERNPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsFRAGMENT ANGULAR-DISTRIBUTIONLarge Hadron Colliderntof:Física [Àrees temàtiques de la UPC]Cross section010308 nuclear & particles physicscernExperimental dataRadioactive wasteNuclear datanuclear dataNATURAL SCIENCES. Physics.Radiació--DosimetriaPRIRODNE ZNANOSTI. Fizika.Nuclear technologyCAPTURE CROSS-SECTION TOTAL ABSORPTION CALORIMETER FRAGMENT ANGULAR-DISTRIBUTION NEUTRON TH-232 U-235 C6D6 COLLABORATION PHYSICS DESIGN.NEUTRONTH-232C6D6
researchProduct

Measurement of the Beam-Helicity Asymmetry in thep(e→,e′p)π0Reaction at the Energy of theΔ(1232)Resonance

2002

In a p((e) over right arrow, e' p)pi(0) out-of-plane coincidence experiment at the three-spectrometer setup of the Mainz Microtron MAMI, the beam-helicity asymmetry has been precisely measured around the energy of the Delta(1232) resonance and Q(2) = 0.2(GeV/c)(2). The results are in disagreement with three up-to-date model calculations. This is interpreted as a lack of understanding of the nonresonant background, which in dynamical models is related to the pion cloud.

PhysicsParticle physicsmedia_common.quotation_subjectGeneral Physics and AstronomyResonanceHelicityAsymmetryCoincidenceNuclear physicsPionNuclear ExperimentMicrotronBeam (structure)Energy (signal processing)media_commonPhysical Review Letters
researchProduct

First measurements of Λ and hyperons in elementary electroproduction at MAMI

2010

Abstract Since 2008 the magnetic spectrometer Kaos , dedicated to the detection of charged kaons, is operating at the 1.5 GeV electron beam of MAMI at the Institut fur Kernphysik in Mainz, Germany. The strangeness programme performed in 2008–9 is addressing some important issues in the field of elementary kaon photoelectro-production reactions. The identification of Λ and Σ 0 hyperons in the missing mass spectra from kaon production off a liquid hydrogen target demonstrates the capability of the extended facility to perform strangeness electro-production spectroscopy at low momentum transfers Q 2 0.5 ( GeV / c ) 2 . Systematic uncertainties in the cross-section extraction from the data are …

PhysicsNuclear and High Energy PhysicsParticle physicsSpectrometerField (physics)010308 nuclear & particles physicsNuclear TheoryHyperonStrangeness01 natural sciencesNuclear physicsMomentum0103 physical sciencesMass spectrumHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsSpectroscopyNuclear Physics A
researchProduct