0000000000470008

AUTHOR

Hanne Mørck Nielsen

showing 6 related works from this author

Molecular characterization of tunable microscale protein-based biomaterials

2019

Protein microspheres tunabilityProtein microspheres tunability drug delivery
researchProduct

Polysorbate 80 controls Morphology, structure and stability of human insulin Amyloid-Like spherulites

2022

AbstractAmyloid protein aggregates are not only associated with neurodegenerative diseases and may also occur as unwanted by-products in protein-based therapeutics. Surfactants are often employed to stabilize protein formulations and reduce the risk of aggregation. However, surfactants alter protein-protein interactions and may thus modulate the physicochemical characteristics of any aggregates formed. Human insulin aggregation was induced at low pH in the presence of varying concentrations of the surfactant polysorbate 80. Various spectroscopic and imaging methods were used to study the aggregation kinetics, as well as structure and morphology of the formed aggregates. Molecular dynamics s…

Amyloid-like Spherulites Fluorescence Lifetime Imaging Aggregate Stability Polysorbate 80 Protein FormulationsAmyloidMorphology (linguistics)AmyloidChemistryInsulinmedicine.medical_treatmentIntermolecular forcePolysorbatesPolyvinyl alcoholSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialsSurface-Active Agentschemistry.chemical_compoundMolecular dynamicsColloid and Surface ChemistryPulmonary surfactantCritical micelle concentrationmedicineBiophysicsHumansInsulinMicelles
researchProduct

Increased carrier peptide stability through ph adjustment improves insulin and pth(1-34) delivery in vitro and in vivo rather than by enforced carrie…

2020

Oral delivery of therapeutic peptides is hampered by their large molecular size and labile nature, thus limiting their permeation across the intestinal epithelium. Promising approaches to overcome the latter include co-administration with carrier peptides. In this study, the cell-penetrating peptide penetratin was employed to investigate effects of co-administration with insulin and the pharmacologically active part of parathyroid hormone (PTH(1-34)) at pH 5, 6.5, and 7.4 with respect to complexation, enzymatic stability, and transepithelial permeation of the therapeutic peptide in vitro and in vivo. Complex formation between insulin or PTH(1-34) and penetratin was pH-dependent. Micron-size…

insulinmedicine.medical_treatmentlcsh:RS1-441Pharmaceutical ScienceParathyroid hormonePeptide02 engineering and technologyArticlelcsh:Pharmacy and materia medica03 medical and health sciencespenetratinIn vivoCarrier peptide Cell-penetrating peptide Insulin Intestinal peptide delivery Penetratin PTH(1-34)Membrane activitymedicine030304 developmental biologychemistry.chemical_classification0303 health sciencesLiposomecarrier peptideChemistryInsulinPermeationintestinal peptide delivery021001 nanoscience & nanotechnologyBiophysicsCell-penetrating peptide0210 nano-technologyPTH(1-34)cell-penetrating peptide
researchProduct

Direct formation of highly tunable and biocompatible protein microparticles

Protein microspheres Tunability
researchProduct

Effect of cholesterol on the interaction between amphyphylic peptides and liposomes

With the rise of antibiotic resistance, antimicrobial peptides (AMPs) have been proposed as an alternative novel class of therapeutic agents. They are polycationic, with a net positive charge of more than +2, and they are characterized by amphipathic structures, with both a hydrophobic and a hydrophilic domain. These characteristics allow them to selectively bind to negatively charged lipids (largely present in bacteria, not in mammalian cells), via hydrophobic and electrostatic interactions. Moreover, mammalian cells are characterized by a high content of cholesterol. For this reason, here we present an experimental study on the effect of the presence of cholesterol on the capability of am…

antimicrobial peptides TP10 peptide-membrane interactionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Peptide–Membrane Interactions Monitored by Fluorescence Lifetime Imaging: A Study Case of Transportan 10

2021

The interest on detailed analysis of peptide-membrane interactions is of great interest in both fundamental and applied sciences as these may relate to both functional and pathogenic events. Such interactions are highly dynamic and spatially heterogeneous, making the investigation of the associated phenomena highly complex. The specific properties of membranes and peptide structural details, together with environmental conditions, may determine different events at the membrane interface, which will drive the fate of the peptide-membrane system. Here, we use an experimental approach based on the combination of spectroscopy and fluorescence microscopy methods to characterize the interactions …

chemistry.chemical_classificationFluorescence-lifetime imaging microscopyChemistryRecombinant Fusion ProteinsSpectrum AnalysisGalaninWasp VenomsPeptideSurfaces and InterfacesCondensed Matter PhysicsFluorescenceArticleMembraneMicroscopy FluorescenceAmphiphileElectrochemistryFluorescence microscopeHigh spatial resolutionBiophysicsPeptide−Membrane Interactions FLIM Transportan 10 PhasorGeneral Materials SciencePeptidesSpectroscopySpectroscopyLangmuir
researchProduct