0000000000470466

AUTHOR

Johannes Albert

The ELSA-Vegetation-Stack: Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar sediments of the last 60,000 years

Abstract Laminated sediment records from several maar lakes and dry maar lakes of the Eifel (Germany) reveal the history of climate, weather, environment, vegetation, and land use in central Europe during the last 60,000 years. The time series of the last 30,000 years is based on a continuous varve counted chronology, the MIS3 section is tuned to the Greenland ice — both with independent age control from 14C dates. Total carbon, pollen and plant macrofossils are used to synthesize a vegetation-stack, which is used together with the stacks from seasonal varve formation, flood layers, eolian dust content and volcanic tephra layers to define Landscape Evolution Zones (LEZ). LEZ 1 encompasses t…

research product

The ELSA-Flood-Stack: A reconstruction from the laminated sediments of Eifel maar structures during the last 60 000 years

Abstract This study reconstructs the main flood phases in central Europe from event layers in sediment cores from Holocene Eifel maar lakes and Pleistocene dry maar structures. These reconstructions are combined with recent gauge time-series to cover the entire precipitation extremes of the last 60 000 years. In general, Eifel maar sediments are perfectly suited for the preservation of event layers since the deep water in the maar lakes is seasonal anoxic and therefore, bioturbation is low. However, the preservation of annual lamination is only preserved in Holzmaar and Ulmener Maar; the other cores are dated by 14C, magnetostratigraphy, tephra markers and ice core tuning. The cores were dr…

research product

Flood-stack of combined sediment record ELSA

This study reconstructs the main flood phases in central Europe from event layers in sediment cores from Holocene Eifel maar lakes and Pleistocene dry maar structures. These reconstructions are combined with recent gauge time-series to cover the entire precipitation extremes of the last 60 000 years. In general, Eifel maar sediments are perfectly suited for the preservation of event layers since the deep water in the maar lakes is seasonal anoxic and therefore, bioturbation is low. However, the preservation of annual lamination is only preserved in Holzmaar and Ulmener Maar; the other cores are dated by 14C, magnetostratigraphy, tephra markers and ice core tuning. The cores were drilled in …

research product