0000000000470565

AUTHOR

Linh Pham

showing 2 related works from this author

Improving the coherence properties of solid-state spin ensembles via optimized dynamical decoupling

2016

In this work, we optimize a dynamical decoupling (DD) protocol to improve the spin coherence properties of a dense ensemble of nitrogen-vacancy (NV) centers in diamond. Using liquid nitrogen-based cooling and DD microwave pulses, we increase the transverse coherence time T2 from ∼ 0.7 ms up to ∼ 30 ms. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. After performing a detailed analysis of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the concatenated XY8 pulse sequences serves as the optimal control scheme for preserving an arbitrary spin state. Finally, we use the conc…

PhysicsCoherence timeDynamical decouplingQuantum decoherenceSpin statesMagnetism02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesComputational physicsQuantum mechanics0103 physical sciencesQuantum information010306 general physics0210 nano-technologyQuantumCoherence (physics)SPIE Proceedings
researchProduct

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond

2015

We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation ${T}_{1}$ effects and DD microwave pulses are used to increase the transverse coherence time ${T}_{2}$ from $\ensuremath{\sim}0.7\phantom{\rule{0.28em}{0ex}}\mathrm{ms}$ up to $\ensuremath{\sim}30\phantom{\rule{0.28em}{0ex}}\mathrm{ms}$. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we c…

PhysicsCoherence timeQuantum PhysicsDynamical decouplingSpin statesDiamondFOS: Physical sciencesPulse sequenceengineering.materialCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuantum mechanicsengineeringQuantum Physics (quant-ph)QuantumMicrowaveCoherence (physics)
researchProduct