6533b832fe1ef96bd129a3e0

RESEARCH PRODUCT

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond

Ronald L. WalsworthDmitry BudkerDmitry BudkerLinh PhamNir Bar-gillNir Bar-gillZhihui WangViatcheslav DobrovitskiD. FarfurnikD. FarfurnikAndrey Jarmola

subject

PhysicsCoherence timeQuantum PhysicsDynamical decouplingSpin statesDiamondFOS: Physical sciencesPulse sequenceengineering.materialCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuantum mechanicsengineeringQuantum Physics (quant-ph)QuantumMicrowaveCoherence (physics)

description

We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation ${T}_{1}$ effects and DD microwave pulses are used to increase the transverse coherence time ${T}_{2}$ from $\ensuremath{\sim}0.7\phantom{\rule{0.28em}{0ex}}\mathrm{ms}$ up to $\ensuremath{\sim}30\phantom{\rule{0.28em}{0ex}}\mathrm{ms}$. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.

10.1103/physrevb.92.060301http://arxiv.org/abs/1505.00636