0000000000470700
AUTHOR
Anne Heidenreich
In vitro and in vivo efficacy of PEGylated diisopropyl fluorophosphatase (DFPase)
Highly toxic organophosphorus compounds that irreversibly inhibit the enzyme acetycholinesterase (AChE), including nerve agents like tabun, sarin, or soman, still pose a credible threat to civilian populations and military personnel. New therapeutics that can be used as a pretreatment or after poisoning with these compounds, complementing existing treatment schemes such as the use of atropine and AChE reactivating oximes, are currently the subject of intense research. A prominent role among potential candidates is taken by enzymes that can detoxify nerve agents by hydrolysis. Diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris is known to effectively hydrolyze DFP and the …
Reversed Enantioselectivity of Diisopropyl Fluorophosphatase against Organophosphorus Nerve Agents by Rational Design
Diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris is an efficient and robust biocatalyst for the hydrolysis of a range of highly toxic organophosphorus compounds including the nerve agents sarin, soman, and cyclosarin. In contrast to the substrate diisopropyl fluorophosphate (DFP) the nerve agents possess an asymmetric phosphorus atom, which leads to pairs of enantiomers that display markedly different toxicities. Wild-type DFPase prefers the less toxic stereoisomers of the substrates which leads to slower detoxification despite rapid hydrolysis. Enzyme engineering efforts based on rational design yielded two quadruple enzyme mutants with reversed enantioselectivity and overall en…