0000000000470720

AUTHOR

Felix Kallenborn

0000-0003-4516-6357

showing 3 related works from this author

Massively parallel computation of atmospheric neutrino oscillations on CUDA-enabled accelerators

2019

Abstract The computation of neutrino flavor transition amplitudes through inhomogeneous matter is a time-consuming step and thus could benefit from optimization and parallelization. Next to reliable parameter estimation of intrinsic physical quantities such as neutrino masses and mixing angles, these transition amplitudes are important in hypothesis testing of potential extensions of the standard model of elementary particle physics, such as additional neutrino flavors. Hence, fast yet precise implementations are of high importance to research. In the recent past, massively parallel accelerators such as CUDA-enabled GPUs featuring thousands of compute units have been widely adopted due to t…

Computer scienceComputationGeneral Physics and AstronomyMemory bandwidth01 natural sciences010305 fluids & plasmasStandard ModelComputational scienceCUDAHardware and Architecture0103 physical sciencesNeutrino010306 general physicsNeutrino oscillationMassively parallelPhysical quantityComputer Physics Communications
researchProduct

CARE: context-aware sequencing read error correction.

2020

Abstract Motivation Error correction is a fundamental pre-processing step in many Next-Generation Sequencing (NGS) pipelines, in particular for de novo genome assembly. However, existing error correction methods either suffer from high false-positive rates since they break reads into independent k-mers or do not scale efficiently to large amounts of sequencing reads and complex genomes. Results We present CARE—an alignment-based scalable error correction algorithm for Illumina data using the concept of minhashing. Minhashing allows for efficient similarity search within large sequencing read collections which enables fast computation of high-quality multiple alignments. Sequencing errors ar…

Statistics and ProbabilityMultiple sequence alignmentComputer scienceSequence assemblyHigh-Throughput Nucleotide SequencingContext (language use)Sequence Analysis DNAcomputer.software_genreBiochemistryGenomeComputer Science ApplicationsComputational MathematicsComputational Theory and MathematicsHumansHuman genomeData miningError detection and correctionMolecular BiologycomputerSequence AlignmentAlgorithmsSoftwareBioinformatics (Oxford, England)
researchProduct

Massively parallel computation of atmospheric neutrino oscillations on CUDA-enabled accelerators

2018

The computation of neutrino flavor transition amplitudes through inhomogeneous matter is a time-consuming step and thus could benefit from optimization and parallelization. Next to reliable parameter estimation of intrinsic physical quantities such as neutrino masses and mixing angles, these transition amplitudes are important in hypothesis testing of potential extensions of the standard model of elementary particle physics, such as additional neutrino flavors. Hence, fast yet precise implementations are of high importance to research. In the recent past, massively parallel accelerators such as CUDA-enabled GPUs featuring thousands of compute units have been widely adopted due to their supe…

Computational PhysicsOtherInterdisciplinary sciences
researchProduct