0000000000470745

AUTHOR

Guillaume Vienne

Potentialities of glass air-clad micro- and nanofibers for nonlinear optics

Micro- and nanofibers constitute an attractive platform for testing nonlinear devices with millimeter size in a simple and flexible fashion, with potential applications in ultra-fast all-optical communications. In this article, we present challenges that must be addressed and targets that can be reached using such a platform. We describe a tunable laser source capable of delivering pulses with a kilowatt peak power and a sub-0.1-nm linewidth that is specially designed for the study of resonant devices such as the nonlinear loop resonator. Experimental and simulation results are presented for silica microfiber based nonlinear devices. The prospect of developing hybrid devices combining highl…

research product

Theoretical study of microfiber resonator devices exploiting a phase shift

Phase shifts within microfiber resonators can be exploited to demonstrate compact and fast-responding devices. Two examples, a sensor and a bistable device, where the origins of the phase shift are fundamentally different, are investigated. In the sensor the phase change originates from the change of refractive index of the medium surrounding the microfiber ring. This is a linear mechanism which translates into a change of resonance wavelength. Calculations of a silica microfiber ring immersed in an aqueous solution and operating at a wavelength of 1550 nm show that with a fiber 550 nm in diameter the sensitivity approaches a maximal value of about 1137 nm/RIU. In contrast to the sensitivit…

research product

Sub-nanosecond nonlinear pulse shaping in microfiber resonators

Thanks to their small size and large index contrast allowing for tight field confinement, optical microfibers are of great interest in nonlinear optics. Their properties have recently been exploited in various devices for supercontinuum generation, pulse compression [1] and third-harmonic generation [2]. Combining field confinement and field enhancement in a loop or knot resonator can result in low-threshold non-linear microfibre devices, in which pulse shaping effects and bistability can be obtained. Such a behaviour has already been observed at a power level of ten milliwatts with millisecond time response, in the case of thermally-induced non-linearity in silica microfibres [3]. In contr…

research product

Slow and fast nonlinearities in microfiber resonators

Nonlinear optical properties of microfiber resonators are investigated. First, a miniature optical resonator standing in air is realized out of a silica microfiber, and measurements of the intensity transfer function show a wide variety of hysteresis cycles obtained at low scanning frequency of the input power. The results are satisfactorily interpreted through the action of thermally-induced nonlinear phase shifts. Secondly, we discuss the conditions under which the fast Kerr nonlinearity can be used efficiently in microfiber resonators under pulsed optical operation.

research product

Observation of a nonlinear microfiber resonator

Measurements of the intensity transfer function of a silica microfiber resonator are shown to follow a wide variety of hysteresis cycles, depending on the cavity detuning and the scanning frequency of the range of input powers. We attribute these observations to a nonlinear phase shift of thermal origin and provide a simple model that reproduces well our measurements. The response time is found to be around 0.6 ms.

research product

Demonstration of a reef knot microfiber resonator.

We propose a new way to realize a microfiber optical resonator by implementing the topology of a reef knot using two microfibers. We describe how this structure, which includes 4 ports and can serve as an add-drop filter, can be fabricated. Resonances in an all-silica reef knot are measured and good fits are obtained from a simple resonator model. We also show the feasibility of assembling a hybrid silica-chalcogenide reef knot structure.

research product

Microfiber Resonators in the Linear and the Nonlinear Regimes

International audience; The microfiber resonators presented here were made by forming an open knot with silica microfibers in air. Resonance spectra were observed in the near infrared and more recently in the visible. The knot structure was mechanically stable and was maintained upon immersion in a liquid. Upon immersion the change of refractive index of the medium surrounding the knot shifted the spectral region where resonances were observed. Moreover, using a liquid which could be polymerized, we have imbedded microfiber knot resonators in a solid matrix to form rugged devices. In the presence of nonlinearity a resonator can exhibit bistability. This behaviour was studied both numericall…

research product

Bistable Device based on the Kerr Effect in a Microfiber Resonator

We propose a bistable device based on the Kerr effect in a microfiber resonator. Our simulations show that low switching powers (in the order of a few tens of mW) are expected with tellurite microfibers.

research product

Stabilisation of modelocking in fibre ring laser through pulse bunching

Bunching of equally spaced pulses is reported to be the most stable mode of operation in a passively modelocked fibre ring laser. The ring includes dispersion management, which results in the absence of strict pulse energy quantisation, giving pulse bunching a better immunity to environmental perturbation.

research product

Potentialities of microfibers for non linear optics

Micro- and nanofibers present attractive optical properties and may be used in a variety of structures and devices. We report in this work the first global study on the non linear properties of these microfibers: an adequate source is built and its characteristics are described, our first results with a silica loop resonator are presented. Third harmonic generation is obtained in these conditions, however, the low intrinsic non linear index prevents the generation of large non linear effects. The use of highly non linear materials, such as soft glasses, is therefore discussed, with their potentialities and the challenges their integration with standard microfibers represent.

research product