0000000000470766
AUTHOR
L. Blarel
Aerosol optical properties and instantaneous radiative forcing based on high temporospatial resolution CARSNET ground-based measurements over eastern China
Abstract. Variations in the optical properties of aerosols and their radiative forcing were investigated based on long-term synchronous observations made at three-minute intervals from 2011 to 2015 over seven adjacent CARSNET (China Aerosol Remote Sensing NETwork) urban (Hangzhou), suburban (Xiaoshan, Fuyang, LinAn, Tonglu, Jiande) and rural (ChunAn) stations in the Yangtze River Delta region, eastern China. The aerosol optical depth (AOD) varied from 0.68 to 0.76, with two peaks in June and September, and decreased from the eastern coast to western inland areas. The ratio of the AOD of fine-mode particles to the total AOD was > 0.90 and the extinction Angström exponent was > 1.20 thr…
Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China
Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm &…
Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements
In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500 nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500 nm averages increased from north to south during both…