0000000000470943

AUTHOR

Naoufal Amrani

Regression Wavelet Analysis for Lossless Coding of Remote-Sensing Data

A novel wavelet-based scheme to increase coefficient independence in hyperspectral images is introduced for lossless coding. The proposed regression wavelet analysis (RWA) uses multivariate regression to exploit the relationships among wavelet-transformed components. It builds on our previous nonlinear schemes that estimate each coefficient from neighbor coefficients. Specifically, RWA performs a pyramidal estimation in the wavelet domain, thus reducing the statistical relations in the residuals and the energy of the representation compared to existing wavelet-based schemes. We propose three regression models to address the issues concerning estimation accuracy, component scalability, and c…

research product

Lossless coding of hyperspectral images with principal polynomial analysis

The transform in image coding aims to remove redundancy among data coefficients so that they can be independently coded, and to capture most of the image information in few coefficients. While the second goal ensures that discarding coefficients will not lead to large errors, the first goal ensures that simple (point-wise) coding schemes can be applied to the retained coefficients with optimal results. Principal Component Analysis (PCA) provides the best independence and data compaction for Gaussian sources. Yet, non-linear generalizations of PCA may provide better performance for more realistic non-Gaussian sources. Principal Polynomial Analysis (PPA) generalizes PCA by removing the non-li…

research product