0000000000471094

AUTHOR

Mary Frances Cotch

0000-0002-2046-4350

Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error

Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG…

research product

Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium.

Myopia is a complex genetic disorder and a common cause of visual impairment among working age adults. Genome-wide association studies have identified susceptibility loci on chromosomes 15q14 and 15q25 in Caucasian populations of European ancestry. Here, we present a confirmation and meta-analysis study in which we assessed whether these two loci are also associated with myopia in other populations. The study population comprised 31 cohorts from the Consortium of Refractive Error and Myopia (CREAM) representing 4 different continents with 55,177 individuals; 42,845 Caucasians and 12,332 Asians. We performed a meta-analysis of 14 single nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on …

research product

Body size at birth and age-related macular degeneration in old age

Purpose To study associations between body size at birth and age-related macular degeneration (AMD) in old age. Methods The study sample consists of 1497 community-dwelling individuals (56.1% women) aged 67-89 years with birth data and retinal data collected twice in old age 5 years apart. Birth data (weight, length, birth order) were extracted from original birth records. Digital retinal photographs were graded to determine AMD status. Data on covariates were collected at the baseline physical examination in old age. Multivariable regression analyses were used to study the association between birth data and AMD adjusting for known confounding factors, including birth year cohort effects. R…

research product