0000000000471267

AUTHOR

Esther Mettler

Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs expe…

research product

Encapsulation of Langerhans' islets: Microtechnological developments for transplantation

There is an increasing trend to apply microsystems and microfluidics to solve medical and biomedical tasks. Microfluidic modules are used to modify and manipulate cells and cell clusters for therapeutic applications. Specifically, a method and technical system for encapsulation of Langerhans' islets as an option for the future treatment of diabetes mellitus is described. Type-1 diabetes patients suffer from an absolute lack of the hormone insulin caused by an autoimmune process destroying the Langerhans' islets. One way to restore glucose-dependent insulin secretion is the transplantation of human pancreatic islet cells (85% beta cells) from cadaveric donors. However, to prevent the rejecti…

research product

In Vivo Molecular Imaging of Somatostatin Receptors in Pancreatic Islet Cells and Neuroendocrine Tumors by Miniaturized Confocal Laser-Scanning Fluorescence Microscopy

The aim of the study was to evaluate real time in vivo molecular imaging of somatostatin receptors (sstrs) using a handheld miniaturized confocal laser scan microscope (CLM) in conjunction with fluorescein-labeled octreotate (OcF) in healthy mice and murine models of neuroendocrine tumors. For CLM a small rigid probe (diameter 7 mm) with an integrated single line laser (488 nm) was used (optical slice thickness 7 μm; lateral resolution 0.7 μm). OcF was synthesized via Fmoc solid-phase peptide synthesis and purified by HPLC showing high-affinity binding to the sstr2 (IC50 6.2 nmol). For in vitro evaluation, rat and human pancreatic cancer cells were used and characterized with respect to its…

research product