0000000000471392
AUTHOR
Pilar Hernandez
Follow-up on non-leptonic Kaon decays at large $N_c$
We report on the status of our dynamical simulations of a $SU (N_c )$ gauge theory with $N_c=3-6$ and $N_f =4$ fundamental fermions. These ensembles can be used to study the Large $N_c$ scaling of weak matrix elements in the GIM limit $m_c=m_u$, that might shed some light on the origin of the $\Delta I=1/2$ rule. We present preliminary results for the $K \to \pi$ matrix elements in the $N_c=3$ dynamical simulations, where we observe a significant effect of the quark loops that goes in the direction of enhancing the ratio of $A_0/A_2$ amplitudes. Finally, we present the relevant NLO Chiral Perturbation Theory predictions for the relation between $K \to \pi $ and $K \to \pi \pi$ amplitudes in…
A numerical treatment of Neuberger's lattice Dirac operator
We describe in some detail our numerical treatment of Neuberger's lattice Dirac operator as implemented in a practical application. We discuss the improvements we have found to accelerate the numerical computations and give an estimate of the expense when using this operator in practice.
Meson interactions at large $N_c$ from Lattice QCD
We report on the computation of the scaling of QCD observables with the number of colours, $N_c$. For this, we use dynamical configurations with four active flavours, $N_f=4$, and values of $N_c=3-6$. We study the meson masses and decay constants, and compute the leading and subleading contributions to the Low Energy Constants (LECs) of the chiral Lagrangian. We also explore $\pi \pi$ scattering in the $I=2$ channel, and compute the $K \to \pi $ weak decay matrix elements. We comment on the relation of the latter to $K \to \pi\pi$ processes and the $\Delta I=1/2$ rule.