0000000000471449

AUTHOR

Clara Ibáñez

showing 2 related works from this author

RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments.

2016

Transcriptome analyses play a central role in unraveling the complexity of gene expression regulation in Saccharomyces cerevisiae. This species, one of the most important microorganisms for humans given its industrial applications, shows an astonishing degree of genetic and phenotypic variability among different strains adapted to specific environments. In order to gain novel insights into the Saccharomyces cerevisiae biology of strains adapted to different fermentative environments, we analyzed the whole transcriptome of three strains isolated from wine, flor wine or mezcal fermentations. An RNA-seq transcriptome comparison of the different yeasts in the samples obtained during synthetic m…

0301 basic medicineGlycerolMicroorganismSaccharomyces cerevisiaeFlorWineSaccharomyces cerevisiaeEthanol fermentationEnvironmentMicrobiologyTranscriptome03 medical and health sciencesGeneWineGeneticsMembrane GlycoproteinsbiologyBase Sequencebusiness.industrySequence Analysis RNAGene Expression Profilingfood and beveragesGeneral Medicinebiology.organism_classificationBiotechnologycarbohydrates (lipids)030104 developmental biologyAlcoholsFermentationFermentationbusinessTranscriptomeFood ScienceInternational journal of food microbiology
researchProduct

Genomic instability in an interspecific hybrid of the genus Saccharomyces: a matter of adaptability

2020

Ancient events of polyploidy have been linked to huge evolutionary leaps in the tree of life, while increasing evidence shows that newly established polyploids have adaptive advantages in certain stress conditions compared to their relatives with a lower ploidy. The genus Saccharomyces is a good model for studying such events, as it contains an ancient whole-genome duplication event and many sequenced Saccharomyces cerevisiae are, evolutionary speaking, newly formed polyploids. Many polyploids have unstable genomes and go through large genome erosions; however, it is still unknown what mechanisms govern this reduction. Here, we sequenced and studied the natural S. cerevisiae × Saccharomyces…

Genome instabilityNuclear geneDNA Copy Number VariationsPopulationGene DosageHybridsWineGenome instabilityadaptationSaccharomyces cerevisiaeBiologyGenomeGenomic InstabilityPolyploidy03 medical and health sciencesSaccharomycesCopy-number variationAdaptationeducation030304 developmental biologyhybridsresequencing0303 health scienceseducation.field_of_study030306 microbiologyChimeraGeneral MedicineGenomicsSequence Analysis DNAbiology.organism_classificationgenome instabilityEvolutionary biologyEpistasisPloidyMicrobial evolution and epidemiology: Mechanisms of evolutionSaccharomyces kudriavzeviiGenome FungalSaccharomyces kudriavzeviiResequencingResearch ArticleMicrobial Genomics
researchProduct