Genomic divergence landscape in recurrently hybridizing Chironomus sister taxa suggests stable steady state between mutual gene flow and isolation
Abstract Divergence is mostly viewed as a progressive process often initiated by selection targeting individual loci, ultimately resulting in ever increasing genomic isolation due to linkage. However, recent studies show that this process may stall at intermediate stable equilibrium states without achieving complete genomic isolation. We tested the extent of genomic isolation between two recurrently hybridizing nonbiting midge sister taxa, Chironomus riparius and Chironomus piger, by analyzing the divergence landscape. Using a principal component‐based method, we estimated that only about 28.44% of the genomes were mutually isolated, whereas the rest was still exchanged. The divergence land…
Climate Change Genomics Calls for Standardized Data Reporting
The advent of new and affordable high-throughput sequencing techniques allows for the investigation of the genetic basis of environmental adaptation throughout the plant and animal kingdom. The framework of genotype-environment associations (GEA) provides a powerful link by correlating the geographic distribution of genotype patterns of individuals or populations with environmental factors on a spatial scale. We coarsely review the short history of GEA studies, summarizing available studies, organisms, data type, and data availability for these studies. GEA is a powerful tool in climate change research and we therefore focus on climate variables as environmental factors. While our initial a…